【題目】某校為提高學(xué)生身體素質(zhì),決定開展足球、籃球、臺球、乒乓球四項課外體育活動,并要求學(xué)生必須并且只能選擇一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下列問題.(要求寫出簡要的解答過程)
(1)這次活動一共調(diào)查了多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計圖.
(3)若該學(xué)??cè)藬?shù)是1300人,請估計選擇籃球項目的學(xué)生人數(shù).
【答案】
(1)這次活動一共調(diào)查學(xué)生:140÷35%=400(人);
(2)選擇“籃球”的人數(shù)為:400﹣140﹣20﹣80=160(人),
;
(3)估計該學(xué)校選擇乒乓球項目的學(xué)生人數(shù)約是:1300× =520(人).
【解析】(1)由“足球”人數(shù)及其百分比可得總?cè)藬?shù);(2)根據(jù)各項目人數(shù)之和等于總?cè)藬?shù)求出“籃球”的人數(shù),補(bǔ)全圖形即可;(3)用總?cè)藬?shù)乘以樣本中足球所占百分比即可得.
【考點精析】認(rèn)真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.分別以頂點A、B為圓心,大于 AB為半徑作弧,兩弧在直線AB兩側(cè)分別交于M、N兩點,過M、N作直線交AB于點P,交AC于點D,連接BD.下列結(jié)論中,錯誤的是( 。
A.直線AB是線段MN的垂直平分線
B.CD= AD
C.BD平分∠ABC
D.S△APD=S△BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)點P從點O出發(fā),乙每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設(shè)點P的運動時間t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當(dāng)t為何值時, 的值最小,求出這個最小值并寫出此時點E、P的坐標(biāo);
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c的頂點為B(﹣1,3),與x軸的交點A在點(﹣3,0)和(﹣2,0)之間,以下結(jié)論: ①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正確的有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某校從九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為A,B,C,D四個等級),并將測試結(jié)果繪制成了如圖所示的兩幅不完整統(tǒng)計圖,根據(jù)統(tǒng)計圖中提供的信息,結(jié)論錯誤的是( )
A.本次抽樣測試的學(xué)生人數(shù)是40
B.在圖1中,∠α的度數(shù)是126°
C.該校九年級有學(xué)生500名,估計D級的人數(shù)為80
D.從被測學(xué)生中隨機(jī)抽取一位,則這位學(xué)生的成績是A級的概率為0.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△AOB的斜邊OA在x軸的正半軸上,∠OBA=90°,且tan∠AOB= ,OB=2 ,反比例函數(shù)y= 的圖象經(jīng)過點B.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△AMB與△AOB關(guān)于直線AB對稱,一次函數(shù)y=mx+n的圖象過點M、A,求一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為( )
A.
B.2
C.2
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寬與長的比是 (約0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:作正方形ABCD,分別取AD、BC的中點E、F,連接EF:以點F為圓心,以FD為半徑畫弧,交BC的延長線于點G;作GH⊥AD,交AD的延長線于點H,則圖中下列矩形是黃金矩形的是( )
A.矩形ABFE
B.矩形EFCD
C.矩形EFGH
D.矩形DCGH
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com