某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個(gè)等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個(gè)等級的護(hù)眼燈,每個(gè)等級每天生產(chǎn)的臺數(shù)如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產(chǎn)量(y臺/天) | 78 | 76 | 74 | … |
(1)y=-2x+80;(2);(3)1800元.
解析試題分析:(1)由于護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),所以可設(shè)y=kx+b,再把代入,運(yùn)用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)“一級產(chǎn)品每臺可獲利21元,每提高一個(gè)等級每臺可多獲利潤1元”即可直接寫出答案;
(3)設(shè)工廠生產(chǎn)x等級的護(hù)眼燈時(shí),獲得的利潤為w元.由于等級提高時(shí),帶來每臺護(hù)眼燈利潤的提高,同時(shí)銷售量下降.而x等級時(shí),每臺護(hù)眼燈的利潤為[21+1(x-1)]元,銷售量為y元,根據(jù):利潤=每臺護(hù)眼燈的利潤×銷售量,列出w與x的函數(shù)關(guān)系式,再根據(jù)函數(shù)的性質(zhì)即可求出最大利潤.
試題解析:
(1)由題意,設(shè)y=kx+b.
把(1,78)、(2,76)代入,得,解得,
∴y與x之間的函數(shù)關(guān)系式為y=-2x+80.故答案為y=-2x+80;
(2)∵一級產(chǎn)品每臺可獲利21元,每提高一個(gè)等級每臺可多獲利潤1元
∴每臺護(hù)眼燈可獲利z(元)關(guān)于等級x(級)的函數(shù)關(guān)系式:;
(3)設(shè)工廠生產(chǎn)x等級的護(hù)眼燈時(shí),獲得的利潤為w元.
由題意,有w=[21+1(x-1)]y
=[21+1(x-1)](-2x+80)
=-2(x-10)2+1800,
所以當(dāng)x=10時(shí),可獲得最大利潤1800元.
故若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)十級的護(hù)眼燈時(shí),能獲得最大利潤,最大利潤是1800元.
考點(diǎn):二次函數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.(售價(jià)不低于進(jìn)價(jià)).請根據(jù)小麗提供的信息,解答小華和小明提出的問題.
認(rèn)真閱讀上面三位同學(xué)的對話,請根據(jù)小麗提供的信息.
(1)解答小華的問題;
(2)解答小明的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3).
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請求出出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為D,對稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長的最小值;
(3)若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場購進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元售出,那么每月可售出500個(gè),根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,銷售量相應(yīng)減少10個(gè).
(1)設(shè)銷售單價(jià)提高x元(x為正整數(shù)),寫出每月銷售量y(個(gè))與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當(dāng)銷售單價(jià)定為多少元時(shí),每月銷售這種籃球的利潤最大,最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.
(1)求:二次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線以為對稱軸向右翻折后,得到一個(gè)新的二次函數(shù),已知二次函數(shù)與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過P點(diǎn)作x軸的垂線,交直線AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D.點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖像上時(shí),求OP的長.
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長度,同時(shí)線段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過Q點(diǎn)作x軸的垂線,與直線AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=-x2-x.
(1)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在矩形OABC中,點(diǎn)A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C, OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線經(jīng)過O,D,C三點(diǎn).
(1)求D的的坐標(biāo)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個(gè)等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個(gè)等級的護(hù)眼燈,每個(gè)等級每天生產(chǎn)的臺數(shù)如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產(chǎn)量(y臺/天) | 78 | 76 | 74 | … |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com