如圖1,在平面直角坐標(biāo)系xOy中,已知A、B兩點(diǎn)的坐標(biāo)分別為(4,0)、(0,2),將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△OCD,拋物線y=ax2-2ax+4經(jīng)過點(diǎn)A.
(1)求拋物線的函數(shù)表達(dá)式,并判斷點(diǎn)D是否在該拋物線上;
(2)如圖2,若點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線上是否存在點(diǎn)E,使△CDE是以CD為直角邊的直角三角形?若存在,請(qǐng)求出所有點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】分析:(1)將A點(diǎn)(4,0)代入解析式得出拋物線的函數(shù)表達(dá)式,并求出D點(diǎn)的坐標(biāo),并判斷點(diǎn)D是否在該拋物線上.
(2)求|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo),應(yīng)延長(zhǎng)CD交對(duì)稱軸于點(diǎn)P.因?yàn)閨PC-PD|小于或等于第三邊即CD,當(dāng)|PC-PD|等于CD時(shí),|PC-PD|的值最大.
(3)假設(shè)存在這樣一個(gè)點(diǎn)E,(x,-x2+x+4),利用勾股定理可以求出.
解答:解:(1)∵y=ax2-2ax+4經(jīng)過點(diǎn)A,
A點(diǎn)的坐標(biāo)為(4,0)
∴解析式為:y=-x2+x+4
∵△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△OCD,∴D點(diǎn)的坐標(biāo)為(-2,0)
代入y=-x2+x+4可得,D點(diǎn)在解析式上.

(2)如圖1:
∵在三角形PCD中,由兩邊之差小于第三邊,
∴|PC-PD|<CD,當(dāng)P在線段DC延長(zhǎng)線上時(shí),|PC-PD|的值最大,為CD的長(zhǎng),
過C(0,4),D(-2,0)的直線為y=2x+4,
∵當(dāng)x=1時(shí),y=2×1+4=6,
∴拋物線對(duì)稱軸交點(diǎn)為(1,6),
∴|PC-PD|的值最大時(shí)點(diǎn)P的坐標(biāo)(1,6);

(3)如圖2,假設(shè)存在這樣一個(gè)點(diǎn)E,(x,-x2+x+4),使△CDE是以CD為直角邊的直角三角形,
故EF2+CF2=CE2,EG2+DG2=DE2
∴EC2+CD2=DE2
∴DE2=EF2+CF2+OC2+DO2
∴x2+[4-(-x2+x+4)]2+20=(-x2+x+4)2+(x+2)2
∴整理得:4x2-12x=0(2)
解得:x1=0(不合題意舍去),x2=3
代入(x,-x2+x+4),得(3,
∴E點(diǎn)坐標(biāo)為(3,).
∴拋物線上存在點(diǎn)E,使△CDE是以CD為直角邊的直角三角形.
如圖3,假設(shè)存在這樣一個(gè)點(diǎn)E′(x,-x2+x+4),使△CDE是以CD為直角邊的直角三角形,
作E′F⊥x軸于點(diǎn)F,E′N⊥y軸于點(diǎn)N,
故E′F2+DF2=DE′2,CN2+NE′2=CE′2,OD2+CO2=DC2,
∴CE′2=E′F2+DF2+OC2+DO2
∴x2+[4-(-x2+x+4)]2=20+(-x2+x+4)2+(x+2)2
∴整理得:x2-3x-10=0
解得:x1=-2(不合題意舍去),x2=5,
代入(x,-x2+x+4),得(5,-3.5)
∴E′點(diǎn)坐標(biāo)為(5,-3.5).
∴拋物線上存在點(diǎn)E(5,-3.5),(3,),使△CDE是以CD為直角邊的直角三角形
點(diǎn)評(píng):此題主要考查了:
(1)待定系數(shù)法求二次函數(shù)解析式,即A點(diǎn)(4,0)代入y=ax2-2ax+4,
(2)勾股定理的應(yīng)用和作對(duì)稱點(diǎn)問題,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請(qǐng)寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案