【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整:
(1)自變量x的取值范圍是 ;
(2)如表是y與x的幾組對(duì)應(yīng)數(shù)值:
在平面直角坐標(biāo)系中,描出了以表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)進(jìn)一步探究發(fā)現(xiàn):該函數(shù)在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,2),觀察函數(shù)圖象,寫(xiě)出該函數(shù)的另一條性質(zhì) ;
(4)請(qǐng)你利用配方法證明:當(dāng)x>0時(shí),最小值為2.(提示:當(dāng)x>0時(shí),).
【答案】(1)x≠0;(2)見(jiàn)解析;(3)x>1時(shí),y隨x增大而增大;0<x<1時(shí),y隨x增大而減;(4)見(jiàn)解析
【解析】
(1)由分母不能為零,即可得出自變量x的取值范圍;
(2)描點(diǎn)、連線,畫(huà)出函數(shù)圖象即可;
(3)觀察函數(shù)圖象,找出該函數(shù)的另一條性質(zhì)即可;
(4)由、、,利用配方法即可得出,由此即可得出:當(dāng)x>0時(shí),的最小值為2.
解:(1)∵x在分母上,
∴自變量x的取值范圍是x≠0,
故答案為:x≠0;
(2)畫(huà)出函數(shù)圖象,如圖所示;
(3)觀察函數(shù)圖象可知:x>1時(shí),y隨x增大而增大;0<x<1時(shí),y隨x增大而減。
(4)∵當(dāng)x>0時(shí),、,且,
∴,
∵,
∴,
∴,即當(dāng)x>0時(shí),的最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與拋物線相交于點(diǎn)和點(diǎn)兩點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),當(dāng)的面積最大時(shí),求此時(shí)的面積及點(diǎn)的坐標(biāo);
(3)在軸上是否存在點(diǎn),使是等腰三角形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo)(不用說(shuō)理);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O在邊AC上,⊙O與△ABC的邊BC,AB分別相切于C,D兩點(diǎn),與邊AC交于E點(diǎn),弦CF與AB平行,與DO的延長(zhǎng)線交于M點(diǎn).
(1)求證:點(diǎn)M是CF的中點(diǎn);
(2)若E是的中點(diǎn),BC=a,寫(xiě)出求AE長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=OB,點(diǎn)D是上一動(dòng)點(diǎn),點(diǎn)E是CD中點(diǎn),連接BD分別交OC,OE于點(diǎn)F,G.
(1)求∠DGE的度數(shù);
(2)若=,求的值;
(3)記△CFB,△DGO的面積分別為S1,S2,若=k,求的值.(用含k的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A與點(diǎn)B的坐標(biāo)分別是,.
對(duì)于坐標(biāo)平面內(nèi)的一點(diǎn)P,給出如下定義:如果,則稱點(diǎn)P為線段AB的“等角點(diǎn)”顯然,線段AB的“等角點(diǎn)”有無(wú)數(shù)個(gè),且A、B、P三點(diǎn)共圓.
設(shè)A、B、P三點(diǎn)所在圓的圓心為C,直接寫(xiě)出點(diǎn)C的坐標(biāo)和的半徑;
軸正半軸上是否有線段AB的“等角點(diǎn)”?如果有,求出“等角點(diǎn)”的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由;
當(dāng)點(diǎn)P在y軸正半軸上運(yùn)動(dòng)時(shí),是否有最大值?如果有,說(shuō)明此時(shí)最大的理由,并求出點(diǎn)P的坐標(biāo);如果沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CB=2,CA=4,線段AD由線段AB繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,當(dāng)直線EF恰好經(jīng)過(guò)點(diǎn)D時(shí),CG的長(zhǎng)等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過(guò)點(diǎn)A(﹣1,0),(1)求拋物線的解析式_____.(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P′,當(dāng)點(diǎn)P′落在第二象限內(nèi),P′A2取得最小值時(shí),求m的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,點(diǎn)P從點(diǎn)B出發(fā)沿折線BA﹣AD﹣DC勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CD勻速運(yùn)動(dòng),點(diǎn)P與點(diǎn)Q的速度相同,當(dāng)二者相遇時(shí),運(yùn)動(dòng)停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實(shí)驗(yàn),結(jié)果如表所示:
種子個(gè)數(shù) | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個(gè)數(shù) | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子頻率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個(gè)推斷:①種子個(gè)數(shù)是700時(shí),發(fā)芽種子的個(gè)數(shù)是624.所以種子發(fā)芽的概率是0.891;②隨著參加實(shí)驗(yàn)的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動(dòng),顯示出一定的穩(wěn)定性.可以估計(jì)種子發(fā)芽的概率約為0.9(精確到0.1);③實(shí)驗(yàn)的種子個(gè)數(shù)最多的那次實(shí)驗(yàn)得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;④若用頻率估計(jì)種子發(fā)芽的概率約為0.9,則可以估計(jì)種子大約有的種子不能發(fā)芽.其中合理的是( )
A.①②B.③④C.②③D.②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com