【題目】如圖,已知等邊三角形△ABC邊長(zhǎng)為a,等腰三角形△BDC中,∠BDC=120,∠MDN=60,角的兩邊分別交AB,AC于點(diǎn)M,N,連結(jié)MN.則△AMN的周長(zhǎng)為( )
A.aB.2aC.3aD.4a
【答案】B
【解析】
根據(jù)題目已知條件無(wú)法求出三條邊的長(zhǎng),只能把三條邊長(zhǎng)用其它已知邊長(zhǎng)來(lái)表示,所以需要作輔助線,延長(zhǎng)AB至F,使BF=CN,連接DF,通過(guò)證明△BDF≌△CDN及△DMN≌△DMF,從而得出MN=MF,△AMN的周長(zhǎng)等于AB+AC的長(zhǎng).
解:∵△BDC是等腰三角形,且∠BDC=120°
∴∠BCD=∠DBC=30°
∵△ABC是邊長(zhǎng)為3的等邊三角形
∴∠ABC=∠BAC=∠BCA=60°
∴∠DBA=∠DCA=90°
延長(zhǎng)AB至F,使BF=CN,連接DF,
在Rt△BDF和Rt△CND中,BF=CN,DB=DC
∴Rt△BDF≌Rt△CDN(HL),
∴∠BDF=∠CDN,DF=DN
∵∠MDN=60°
∴∠BDM+∠CDN=60°
∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM為公共邊
∴△DMN≌△DMF(SAS),
∴MN=MF
∴△AMN的周長(zhǎng)是:AM+AN+MN=AM+MB+BF+AN=AB+AC=2a,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD平分∠ACB,點(diǎn)D是AB的中點(diǎn),AE∥DC,AE交BC的延長(zhǎng)線于點(diǎn)E,且∠ACE=60°,BC=8.求△ACE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖A,B,D在同一條直線上,∠A=∠D=90°,AB=DE,∠BCE=∠BEC,
(1)求證:△ACB≌△DBE
(2)求證:CB⊥BE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△ABC中,∠ABC=90°,AB=BC=2,AC=2,D是邊AC上一點(diǎn)(D與A、C不重合),過(guò)點(diǎn)A作AE垂直AC,求滿足AE=CD,聯(lián)結(jié)DE交邊AB于點(diǎn)F.
(1)試判斷△DBE的形狀,并證明你的結(jié)論.
(2)當(dāng)點(diǎn)D在邊AC上運(yùn)動(dòng)時(shí),四邊形ADBE的面積是否發(fā)生變化?若不變,求出四邊形ADBE的面積;若改變,請(qǐng)說(shuō)明理由.
(3)當(dāng)△BDF是等腰三角形時(shí),請(qǐng)直接寫(xiě)出AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】凸四邊形的四個(gè)頂點(diǎn)滿足:每一個(gè)頂點(diǎn)到其他三個(gè)頂點(diǎn)距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形中,為中點(diǎn)、為中點(diǎn),為延長(zhǎng)線上一點(diǎn),連接并延長(zhǎng)交與點(diǎn),連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)是正方形的對(duì)角線上一點(diǎn),于,于,連接,給出下列四個(gè)結(jié)論:
①;②一定是等腰三角形;③;④,
其中正確結(jié)論的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲、乙兩個(gè)不透明的布袋,甲袋中裝有個(gè)完全相同的小球,分別標(biāo)有數(shù)字,,,;乙袋中裝有個(gè)完全相同的小球,分別標(biāo)有數(shù)字,,;小宇從甲袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字為,小惠從乙袋中隨機(jī)摸出一個(gè)小球,記下的數(shù)字為.
若點(diǎn)的坐標(biāo)為,求點(diǎn)在第四象限的概率;
已知關(guān)于的一元二次方程,求該方程有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法合理的是( )
A. 某彩票中獎(jiǎng)的機(jī)會(huì)是,那么某人買(mǎi)了張彩票,肯定有一張中獎(jiǎng)
B. 小美在次拋圖釘?shù)脑囼?yàn)中發(fā)現(xiàn)了次釘尖朝上,據(jù)此他認(rèn)為釘尖朝上的概率為
C. 拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)“正面”和“反面”的概率相等,因此拋次的話,一定有次“正面”,次“反面”
D. 在一次課堂上進(jìn)行的試驗(yàn)中,甲、乙兩組同學(xué)估計(jì)一枚硬幣落地后正面朝上的概率為和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com