【題目】如圖是輪滑場地的截面示意圖,平臺AB距x軸(水平)18米,與y軸交于點B,與滑道y=(x≥1)交于點A,且AB=1米.運動員(看成點)在BA方向獲得速度v米/秒后,從A處向右下飛向滑道,點M是下落路線的某位置.忽略空氣阻力,實驗表明:M,A的豎直距離h(米)與飛出時間t(秒)的平方成正比,且t=1時h=5,M,A的水平距離是vt米.
(1)求k,并用t表示h;
(2)設v=5.用t表示點M的橫坐標x和縱坐標y,并求y與x的關系式(不寫x的取值范圍),及y=13時運動員與正下方滑道的豎直距離;
(3)若運動員甲、乙同時從A處飛出,速度分別是5米/秒、v乙米/秒.當甲距x軸1.8米,且乙位于甲右側超過4.5米的位置時,直接寫出t的值及v乙的范圍.
【答案】(1)k=18,h=5t2;(2)x=5t+1,y=﹣5t2+18,y=,當y=13時,運動員在與正下方滑道的豎直距離是10米;(3)t=1.8,v乙>7.5
【解析】(1)用待定系數(shù)法解題即可;
(2)根據(jù)題意,分別用t表示x、y,再用代入消元法得出y與x之間的關系式;
(3)求出甲距x軸1.8米時的橫坐標,根據(jù)題意求出乙位于甲右側超過4.5米的v乙.
(1)由題意,點A(1,18)代入y=,
得:18=,
∴k=18,
設h=at2,把t=1,h=5代入,
∴a=5,
∴h=5t2;
(2)∵v=5,AB=1,
∴x=5t+1,
∵h=5t2,OB=18,
∴y=﹣5t2+18,
由x=5t+1,
則t=(x-1),
∴y=﹣(x-1)2+18=,
當y=13時,13=﹣(x-1)2+18,
解得x=6或﹣4,
∵x≥1,
∴x=6,
把x=6代入y=,
y=3,
∴運動員在與正下方滑道的豎直距離是13﹣3=10(米);
(3)把y=1.8代入y=﹣5t2+18
得t2=,
解得t=1.8或﹣1.8(負值舍去)
∴x=10
∴甲坐標為(10,1.8)恰號落在滑道y=上,
此時,乙的坐標為(1+1.8v乙,1.8),
由題意:1+1.8v乙﹣(1+5×1.8)>4.5,
∴v乙>7.5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H .下列結論:
①∠DBE=∠F;②∠F=∠BAC-∠C;
③2∠BEF=∠BAF+∠C;④∠BGH=∠ABE+∠C.其中正確的有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:且、、分別是點、、在數(shù)軸上對應的數(shù).
(1)求點與點的距離;
(2)若甲、乙兩個動點分別從、兩點同時出發(fā),沿數(shù)軸正方向運動,它們的速度分別是2和1(單位長度/秒),求甲追上乙時所用的時間;
(3)在(2)的條件下,甲動點向數(shù)軸正方向運動,乙動點向數(shù)軸負方向運動.當甲動點開始運動時,丙動點以4個單位長度/秒的速度和甲動點同時從點向數(shù)軸正方向運動,當丙動點遇到乙動點時立即返回向數(shù)軸負方向運動,當遇到甲動點時也馬上返回,如此往復直到甲乙兩動點相遇則停止運動,設甲乙兩動點在點處相遇,求從開始到停止運動,丙動點走的總路程以及點對應的數(shù)字.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在數(shù)軸上對應的數(shù)為26,以原點O為圓心,OA為半徑作優(yōu)弧,使點B在O右下方,且tan∠AOB=,在優(yōu)弧上任取一點P,且能過P作直線l∥OB交數(shù)軸于點Q,設Q在數(shù)軸上對應的數(shù)為x,連接OP.
(1)若優(yōu)弧上一段的長為13π,求∠AOP的度數(shù)及x的值;
(2)求x的最小值,并指出此時直線l與所在圓的位置關系;
(3)若線段PQ的長為12.5,直接寫出這時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC中,AB=AC=12cm,BC=9cm,若點Q在線段CA上以4cm/s的速度由點C向點A運動,點P在BC線段上以3cm/s的速度由B向C運動,求多長時間點Q與點P第一次在哪條邊上相遇?( )
A.24s BC邊B.12s BC邊
C.24s AB邊D.12s AC邊
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點E,且AC⊥BD,作BF⊥CD,垂足為點F,BF與AC交于點C,∠BGE=∠ADE.
(1)如圖1,求證:AD=CD;
(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ADE面積的2倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)1~5月份利潤的變化情況圖所示,以下說法與圖中反映的信息相符的是( 。
A. 1~3月份利潤的平均數(shù)是120萬元
B. 1~5月份利潤的眾數(shù)是130萬元
C. 1~5月份利潤的中位數(shù)為120萬元
D. 1~2月份利潤的增長快于2~3月份利潤的增長
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com