【題目】任丘市舉辦一場中學生乒乓球比賽,比賽的費用y(元)包括兩部分:一部分是租用比賽場地等固定不變的費用b(元),另一部分費用與參加比賽的人數(shù)(x)人成正比.當x=20時,y=1600;當x=30時,y=2000.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果承辦此次比賽的組委會共籌集;經(jīng)費6350元,那么這次比賽最多可邀請多少名運動員參賽?
科目:初中數(shù)學 來源: 題型:
【題目】某市2013~2017年常住人口數(shù)統(tǒng)計如圖所示.
根據(jù)圖中提供的信息,回答下列問題:
(1)該市常住人口數(shù),2017年比2016年增加了______萬人;
(2)與上一年相比,該市常住人口數(shù)增加最多的年份是____________;
(3)預測2018年該市常住人口數(shù)大約為多少萬人?請用所學的統(tǒng)計知識說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某籃球架的側(cè)面示意圖如圖所示,現(xiàn)測得如下數(shù)據(jù):底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側(cè),與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin53°≈, cos53°≈,tan53°≈).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:材料1:如果一個多項式中的字母按照任何次序輪換后,原多項式不變,那么稱該多項式是輪換多項式,簡稱輪換式.例如:多項式,將字母換字母,字母換字母,得到多項式,而,所以多項式是輪換式.我們把含有兩個字母的輪換式稱為二元輪換式,其中含字母,的二元輪換式的基本輪換式是和,像,等二元輪換式都可以用,表示,例如:.
材料2:因為,所以,對于二次項系數(shù)為1的二次三項式的因式分解,就是把常數(shù)項分解成兩個數(shù)的積,且使這兩數(shù)的和等于,即如果有,兩數(shù)滿足,,則有.如分解因式:因為,,所以.
請根據(jù)以上材料解決下列問題:
(1)式子①;②;③,④中,屬于輪換式的是 (填序號);
(2)因式分解: ; ;
(3)若(其中),且,求的值并把式子因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△A′B′C′是△ABC經(jīng)過平移得到的,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。
(1)請寫出三角形ABC平移的過程;
(2)分別寫出點A′,B′,C′ 的坐標。
(3)求△A′B′C′的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩名運動員進行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 第九次 | 第十次 | |
甲 | 7 | 10 | 8 | 10 | 9 | 9 | 10 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 9 | 9 | 10 | 8 | 10 | 7 | 10 |
(1)選手甲的成績的中位數(shù)是 分;選手乙的成績的眾數(shù)是 分;
(2)計算選手甲的平均成績和方差;
(3)已知選手乙的成績的方差是15,則成績較穩(wěn)定的是哪位選手?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在AB上,CD=CB,點E為BD的中點,且EA=EC,點F為AC的中點,連接EF交CD于點M,連接AM.
(1)求證:EF=AC;
(2)求線段AM、DM、BC之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,現(xiàn)有邊長為1,a(a>1)的一張矩形紙片ABCD,把這個矩形按要求分割,畫出分割線,并在相應的位置上寫出a的值.
(1)把這個矩形分成兩個全等的小矩形,且分成的兩個矩形與原矩形相似.
(2)把這個和矩形分成三個矩形,且每一個矩形都與原矩形相似,給出兩種不同的分割.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用我們學過的知識,可以得出下面這個優(yōu)美的等式:
;該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔美.
⑴.請你證明這個等式;
⑵.如果,請你求出 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com