某超市用5000元購進(jìn)一批新品種的蘋果試銷,由于銷售狀況良好,超市決定再用11000元購進(jìn)該種蘋果,但這次進(jìn)貨價(jià)比試銷時(shí)多了0.5元,購進(jìn)蘋果數(shù)量是試銷時(shí)的兩倍。
(1)試銷時(shí)該品種蘋果的進(jìn)貨價(jià)是多少?
(2)如果超市將該品種蘋果按每千克7元的價(jià)格出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的7折售完,那么超市在這兩次蘋果銷售中共贏利多少元?
(1)5元/斤;(2)4160元

試題分析:(1)設(shè)試銷時(shí)蘋果的進(jìn)貨價(jià)是x元/斤,根據(jù)“11000元購進(jìn)該種蘋果的進(jìn)貨價(jià)比試銷時(shí)多了0.5元,購進(jìn)蘋果數(shù)量是試銷時(shí)的兩倍”即可列方程求解;
(2)先分別求得兩次進(jìn)的蘋果的質(zhì)量,再分別求得兩次銷售的利潤(rùn),從而可以求得結(jié)果.
(1)設(shè)試銷時(shí)蘋果的進(jìn)貨價(jià)是x元/斤,由題意得
,解得
經(jīng)檢驗(yàn),是原方程的解且符合題意
答:試銷時(shí)該品種蘋果的進(jìn)貨價(jià)是5元/斤;
(2),即兩次分別進(jìn)了1000斤和2000斤
第一次銷售獲利:
第二次銷售獲利:
則總共獲利2000+2160=4160元.
點(diǎn)評(píng):解題的關(guān)鍵是讀懂題意,找到等量關(guān)系,正確列方程求解,注意解分式方程最后要寫檢驗(yàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題


小強(qiáng)和爸爸上山游玩,兩人距地面的高度y(米)與小強(qiáng)登山時(shí)間x(分)之間的函數(shù)圖象分別如圖中折線OAC和線段DE所示,根據(jù)函數(shù)圖象進(jìn)行以下探究:

信息讀。海1)爸爸登山的速度是每分鐘       米;(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;
圖象理解:
(3)求線段DE所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(4)計(jì)算并填空:m      
問題解決:
(5)若小強(qiáng)提速后,他登山的速度是爸爸速度的3倍,問小強(qiáng)登山多長(zhǎng)時(shí)間時(shí)開始提速?此時(shí)小強(qiáng)距地面的高度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某煤廠原計(jì)劃x天生產(chǎn)120噸煤,由于采用新的技術(shù),每天增加生產(chǎn)3噸,因此提前2天完成生產(chǎn)任務(wù),列出方程為(   )
A.= -3B.=-3
C.= -3D.= -3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若關(guān)于x的方程=0無解,則(   )
A.m=1B.m=﹣1C.m=0或﹣1D.m=1或﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

解方程:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若分式方程=1有增根,則m的值為                  。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商店準(zhǔn)備從批發(fā)市場(chǎng)購進(jìn)甲、乙兩種鋼筆進(jìn)行銷售,若每支甲種鋼筆的進(jìn)價(jià)比每支乙種鋼筆的進(jìn)價(jià)少3元,且用80元購進(jìn)甲種鋼筆的數(shù)量與用120元購進(jìn)乙種鋼筆的數(shù)量相同。
求甲、乙兩種鋼筆的進(jìn)價(jià)每支分別為多少元?
若該商店本次購進(jìn)甲種鋼筆的數(shù)量比購進(jìn)乙種鋼筆的數(shù)量的2倍還多5支,購進(jìn)兩種鋼筆的總數(shù)量不超過80支,該商店每支甲種鋼筆的銷售價(jià)格為10元。每支乙種鋼筆的銷售價(jià)格為14元,則將本次購進(jìn)的甲、乙兩種鋼筆全部售出后,可使銷售兩種鋼筆的總利潤(rùn)超過319元,通過計(jì)算求出該商店本次從批發(fā)市場(chǎng)購進(jìn)甲、乙兩種鋼筆有幾種方案?請(qǐng)你設(shè)計(jì)出來。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用換元法解分式方程時(shí),如果設(shè),那么原方程化為關(guān)于的整式方程可以是         .

查看答案和解析>>

同步練習(xí)冊(cè)答案