【題目】在如圖所示的棱長(zhǎng)為1的正方體中,A,B,C,D,E是正方體的頂點(diǎn),M是棱CD的中點(diǎn).動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿著D→A→B的路線在正方體的棱上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程是x,y=PM+PE,則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

【答案】C
【解析】解:當(dāng)0≤x≤1時(shí),
∵PM= = ,PE= = ,
∴y= + ,
當(dāng)x=0時(shí),y= + ;當(dāng)x=1時(shí),y= +1;
當(dāng)側(cè)面展開(kāi)圖中M、P、E三點(diǎn)共線時(shí),y的值最小,最小值為 = ;
當(dāng)1<x≤2時(shí),
∵PM= ,PE= =
∴y= + ,
當(dāng)x=2時(shí),y= + ;
當(dāng)側(cè)面展開(kāi)圖中M、P、E三點(diǎn)共線時(shí),y的值最小,最小值為 = ;
∵函數(shù)圖象分為兩段,∴A錯(cuò)誤;
,即第一段的最小值<第二段的最小值,
+ +1< + ,即x為0時(shí)的函數(shù)值<x為1時(shí)的函數(shù)值<x為2時(shí)的函數(shù)值,
∴B、D錯(cuò)誤;
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識(shí),掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為3,1.反比例函數(shù)y= 的圖象經(jīng)過(guò)A,B兩點(diǎn),則菱形ABCD的面積為(

A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等邊三角形.
(1)動(dòng)手操作:如圖1,點(diǎn)D在△ABC內(nèi),且∠BDC=150°,CD=1,BD= , 把△BCD繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)B旋轉(zhuǎn)到點(diǎn)A,得到△AEC.

①依題意補(bǔ)全圖1;(確認(rèn)無(wú)誤后,請(qǐng)用黑色水筆描黑)
②連接DE,則線段DE= , AD=;
(2)應(yīng)用拓展:如圖2,點(diǎn)D在△ABC外,且CD=3,BD=4,AD=5,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)營(yíng)業(yè)額不斷增長(zhǎng),某大型超市決定購(gòu)進(jìn)甲、乙兩種商品,已知甲種商品每件進(jìn)價(jià)為150元,售價(jià)為168元;乙種商品每件進(jìn)價(jià)為120元,售價(jià)為140元,該超市用42000元購(gòu)進(jìn)甲、乙兩種商品,銷售完后共獲利5600元.
(1)該超市購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)超市第二次以原價(jià)購(gòu)進(jìn)甲、乙兩種商品共400件,且購(gòu)進(jìn)甲種商品的件數(shù)多于乙種商品的件數(shù),要使第二次經(jīng)營(yíng)活動(dòng)的獲利不少于7580元,共有幾種進(jìn)貨方案?寫(xiě)出利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B,C,D,E在同一直線上,并且BC=DE.若AB=CF,AD=EF.試探索AB與FC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解全校學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.同時(shí)把調(diào)查得到的結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,“公交車”部分所對(duì)應(yīng)的圓心角是多少度?
(3)若全校有1600名學(xué)生,估計(jì)該校乘坐私家車上學(xué)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時(shí)出發(fā),快車到達(dá)乙地后,快車停止運(yùn)動(dòng),慢車?yán)^續(xù)以原速勻速駛往甲地,直至慢車到達(dá)甲地為止,設(shè)慢車行駛的時(shí)間為t(h),兩車之間的距離為s(km),圖中的折線表示s與t之間的函數(shù)關(guān)系.根據(jù)圖象提供的信息有下列說(shuō)法:①甲、乙兩地之間的距離為900km;②行駛4h兩車相遇;③快車的速度為150km/h;④行駛6h兩車相距400km;⑤相遇時(shí)慢車行駛了240km;⑥快車共行駛了6h.其中符合圖象描述的說(shuō)法有( )個(gè).

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),直線AB與x軸相交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(﹣6,m),線段OA=5,E為x軸正半軸上一點(diǎn),且cos∠AOE=

(1)求反比例函數(shù)的解析式;
(2)求證:SAOC=2SBOC
(3)直接寫(xiě)出當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是AB弧的中點(diǎn).

(1)求證:AB平分∠OAC;
(2)延長(zhǎng)OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案