如圖,在等邊△ABC中,點D是BC邊的中點,以AD為邊作等邊△ADE.
(1)求∠CAE的度數(shù);
(2)取AB邊的中點F,連接CF、CE,試證明四邊形AFCE是矩形.
(1)∵△ABC是等邊三角形,且D是BC中點,
∴DA平分∠BAC,即∠DAB=∠DAC=30°;
∵△DAE是等邊三角形,
∴∠DAE=60°;
∴∠CAE=∠DAE-∠CAD=30°;

(2)證明:∵△BAC是等邊三角形,F(xiàn)是AB中點,
∴CF⊥AB;
∴∠BFC=90°
由(1)知:∠CAE=30°,∠BAC=60°;
∴∠FAE=90°;
∴AECF;
∵△BAC是等邊三角形,且AD、CF分別是BC、AB邊的中線,
∴AD=CF;
又AD=AE,∴CF=AE;
∴四邊形AFCE是平行四邊形;
∵∠AFC=∠FAE=90°,
∴四邊形AFCE是矩形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,長方形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始以2cm/s的速度向點B移動,點Q沿DA邊從點D開始以1cm/s的速度向點A移動;如果P、Q同時出發(fā),用t(s)表示移動時間(0≤t≤6).
(1)直接寫出AQ、PB的長(用t的式子表示)
(2)當t為何值時,△APQ是等腰直角三角形?
(3)求四邊形APCQ的面積,并寫出一個與計算結果有關的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,矩形ABCD中,BD是對角線,AB=4,AD=3.
(1)尺規(guī)作圖:作∠ADB的平分線DM(保留作圖痕跡,不寫作法);
(2)設DM與AB交于點E,過直E作EF上BD于F,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,O為矩形ABCD的中心,M為BC邊上任一點,ON⊥OM且與CD邊交于點N.若AB=6,AD=4,設OM=x,ON=y,則y與x的函數(shù)關系式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在矩形ABCD中,M是BC的中點,MA⊥MD,若矩形的周長為48cm,則矩形ABCD的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABC5O5的面積為______cm2,平行四邊形ABCnOn的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,順次連接圓內接矩形各邊的中點,得到菱形ABCD,若BD=6,DF=4,則菱形ABCD的邊長為( 。
A.4
2
B.3
2
C.5D.7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AE⊥BD,垂足為E,∠DAE:∠BAE=1:2,則∠CAE=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在菱形ABCD中,O是兩對角線AC,BD的交點,則下列結論中正確的是(  )
A.AC⊥BDB.AB≠BCC.AC=BDD.∠ABC=∠BCD

查看答案和解析>>

同步練習冊答案