【題目】已知 x=﹣1 是一元二次方程 ax2﹣bx+6=0 的一個(gè)根,則 a+b 的值為_____
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是平行四邊形,AC、BD交于點(diǎn)O,∠1=∠2.
(1)求證:四邊形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓的半徑為3,一點(diǎn)到圓心的距離是5,則這點(diǎn)在( )
A.圓內(nèi)
B.圓上
C.圓外
D.都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)探究:
(1)動(dòng)手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=;
②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點(diǎn)B、C,那么∠ABD+∠ACD=
(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著什么關(guān)系,并說明理由;
(3)靈活應(yīng)用:
請(qǐng)你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,求∠BEC的度數(shù);
(4)②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9 ,
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點(diǎn),且DE=DF,連接BF、CE,且∠FBD=35°,∠BDF=75°,下列說法:①△BDF≌CDE;②ABD和△ACD面積相等;③BF∥CE;④∠DEC=70°,其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙兩個(gè)圓柱形容器(容器足夠高),底面半徑之比為1∶2,用一個(gè)管子在甲、乙兩個(gè)容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現(xiàn)同時(shí)向甲、乙兩個(gè)容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均為正整數(shù),當(dāng)甲、乙兩個(gè)容器的水位都到達(dá)連通管子的位置時(shí),停止注水.甲容器的水位有2次比乙容器的水位高1厘米,設(shè)注水時(shí)間為t分鐘.
(1)求k的值(用含a的代數(shù)式表示).
(2)當(dāng)甲容器的水位第一次比乙容器的水位高1厘米時(shí),求t的值.
(3)當(dāng)甲容器的水位第二次比乙容器的水位高1厘米時(shí),求a,k,t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com