(2013•廣州)若5k+20<0,則關(guān)于x的一元二次方程x2+4x-k=0的根的情況是( 。
分析:根據(jù)已知不等式求出k的范圍,進(jìn)而判斷出根的判別式的值的正負(fù),即可得到方程解的情況.
解答:解:∵5k+20<0,即k<-4,
∴△=16+4k<0,
則方程沒有實(shí)數(shù)根.
故選A
點(diǎn)評(píng):此題考查了一元二次方程根的判別式,根的判別式的值大于0,方程有兩個(gè)不相等的實(shí)數(shù)根;根的判別式的值等于0,方程有兩個(gè)相等的實(shí)數(shù)根;根的判別式的值小于0,方程沒有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)若代數(shù)式
x
x-1
有意義,則實(shí)數(shù)x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖,在東西方向的海岸線MN上有A、B兩艘船,均收到已觸礁擱淺的船P的求救信號(hào),已知船P在船A的北偏東58°方向,船P在船B的北偏西35°方向,AP的距離為30海里.
(1)求船P到海岸線MN的距離(精確到0.1海里);
(2)若船A、船B分別以20海里/小時(shí)、15海里/小時(shí)的速度同時(shí)出發(fā),勻速直線前往救援,試通過計(jì)算判斷哪艘船先到達(dá)船P處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)y=
kx
(x>0,k≠0)的圖象經(jīng)過線段BC的中點(diǎn)D.
(1)求k的值;
(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(dòng)(不與點(diǎn)D重合),過點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知AB是⊙O的直徑,AB=4,點(diǎn)C在線段AB的延長(zhǎng)線上運(yùn)動(dòng),點(diǎn)D在⊙O上運(yùn)動(dòng)(不與點(diǎn)B重合),連接CD,且CD=OA.
(1)當(dāng)OC=2
2
時(shí)(如圖),求證:CD是⊙O的切線;
(2)當(dāng)OC>2
2
時(shí),CD所在直線于⊙O相交,設(shè)另一交點(diǎn)為E,連接AE.
①當(dāng)D為CE中點(diǎn)時(shí),求△ACE的周長(zhǎng);
②連接OD,是否存在四邊形AODE為梯形?若存在,請(qǐng)說明梯形個(gè)數(shù)并求此時(shí)AE•ED的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案