【題目】如圖,AB是的直徑,C是半圓AB上一點(diǎn),連AC、OC,AD平分,交弧BC于D,交OC于E,連OD,CD,下列結(jié)論:
①弧弧CD;②;③;④當(dāng)C是半圓的中點(diǎn)時(shí),則.其中正確的結(jié)論是( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
根據(jù)圓周角定理得出弧CD=弧BD,推出CD=BD,求出∠DOB=2∠DAB,∠CAB=2∠DAB,根據(jù)平行線判定推出AC∥OD,根據(jù)三角形外角性質(zhì)即可判斷③,連接BD、BE,求出BD=DE,求出BD=CD,即可得出答案.
∵AD平分∠CAB,
∴∠CAD=∠BAD,
∴弧BD=弧CD,∴①正確;
∵OA=OD,
∴∠ODA=∠OAD,
∴∠BOD=∠ODA+∠OAD=2∠DAB,
∵AD平分∠CAB,
∴∠CAB=2∠DAB,
∴∠DOB=∠CAB,
∴AC∥OD,∴②正確;
∵∠ACD=∠ACO+∠OCD,∠OED=∠OCD+∠CDA,
根據(jù)已知不能推出∠ACO=∠CDA,∴∠ACD=∠OED不對,∴③錯(cuò)誤;
連接BD,BE,
∵C為弧AB中點(diǎn),
∴∠CAB=45°,
∴∠DAB=22.5°,
∵AB是直徑,
∴∠ADB=90°,
∴∠DBA=67.5°,
∵C為弧AB中點(diǎn),
∴OC⊥AB,
∵OA=OB,
∴AE=BE,
∴∠EBA=∠DAB=22.5°,
∴∠DBE=67.5°-22.5°=45°,
∴∠DEB=180°-90°-45°=45°=∠DBE,
∴DE=BD,
∵弧CD=弧BD,
∴CD=BD,
∴CD=DE,∴④正確;
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+8ax(a>0)與x軸交于O,A兩點(diǎn),頂點(diǎn)為M,對稱軸與x軸交于H,與過O,A,M三點(diǎn)的⊙Q交于點(diǎn)B,⊙Q的半徑為5,點(diǎn)C從點(diǎn)B出發(fā),沿著圓周順時(shí)針向點(diǎn)M運(yùn)動,射線MC與x軸交于D,與拋物線交于E,過點(diǎn)E作ME的垂線交拋物線的對稱軸于點(diǎn)F.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)C的運(yùn)動路徑長為 時(shí),求證:HD=2HA.
(3)在點(diǎn)C運(yùn)動過程中.是否存在這樣的位置,使得以點(diǎn)M,E,F為頂點(diǎn)的三角形與△AHQ相似?若存在,求出此位置時(shí)點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x>0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)若點(diǎn)P是x軸上一動點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個(gè)相等的實(shí)數(shù)根;④;其中正確的結(jié)論有( )
A.1個(gè)B.2 個(gè)C.3 個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連接DO并延長交CB的延長線于點(diǎn)E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過點(diǎn)C,過點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準(zhǔn)備采購若干套健身器材免費(fèi)提供給社區(qū),經(jīng)考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價(jià)為萬元,經(jīng)過連續(xù)兩年降價(jià),2017年每套售價(jià)為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經(jīng)過招標(biāo),決定年內(nèi)采購并安裝勁松公司兩種型號的健身器材共套,采購專項(xiàng)費(fèi)總計(jì)不超過萬元,采購合同規(guī)定:每套型健身器售價(jià)為萬元,每套型健身器售價(jià)我 萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護(hù)費(fèi)分別是購買價(jià)的 和 .市政府計(jì)劃支出 萬元進(jìn)行養(yǎng)護(hù).問該計(jì)劃支出能否滿足一年的養(yǎng)護(hù)需要?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對稱軸為直線 x=2,若其與 x 軸的一個(gè)交點(diǎn)為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com