如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,它們的斜邊長為2,若△AFG繞點旋轉(zhuǎn),AF、AG與邊BC的交點分別為點D、E(點D不與點B重合,點E不與點C重合).
(1)請在圖1中找出兩對相似而不全等的三角形,并選擇其中一對進行證明;
(2)△ABC的斜邊BC所在的直線為x軸,BC邊上的高所在的直線為y軸,建立平面直角坐標系(如圖2).在邊BC上找一點D使BD=CE,求出點D的坐標,并通過計算驗證BD2+CE2=DE2;
(3)在旋轉(zhuǎn)過程中,(2)中的等量關系BD2+CE2=DE2是否始終成立?若成立請證明你的結(jié)論;若不成立,請說明理由.
精英家教網(wǎng)
分析:(1)易得∠DAE=∠B=∠C=45°,那么可得∠BAE=ADC,則△BAE∽△CDA,同理可得△ABE∽△DCA;
(2)由BD=CE得BE=CD,那么可得△ABE≌△ACD,則AD=AE,加上(1)中的相似,可得CD=AB=
2
,由OC=1得到點D的坐標,進而表示出所求的代數(shù)式.
(3)可旋轉(zhuǎn)一特殊角的度數(shù),求解,得到一般結(jié)論.
解答:精英家教網(wǎng)解:(1)△ABE∽△DAE,△ABE∽△DCA.
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,
∴∠BAE=∠CDA.
又∠B=∠C=45°,
∴△ABE∽△DCA.

(2)∵BD=CE,
∴BE=CD.
∵AB=AC,∠ABC=∠ACB=45°,
∴△ABE≌△ACD.
∴AD=AE.
∵△BAE∽△CDA,
∴CD=AB=
2
,易得CO=1.
∴OD=
2
-1,那么點D的坐標為(1-
2
,0).
∵BD=2-
2
,CE=2-
2
,DE=2-2BD=2
2
-2,
∴BD2+CE2=DE2

(3)成立.
證明:將△ACE繞點A順時針旋轉(zhuǎn)90°至△ABH的位置,則CE=HB,AE=AH,
∠ABH=∠C=45°,旋轉(zhuǎn)角∠EAH=90°.
連接HD,在△EAD和△HAD中,
∵AE=AH,∠HAD=∠EAH-∠FAG=45°=∠EAD,AD=AD,
∴△EAD≌△HAD.
∴DH=DE.
又∠HBD=∠ABH+∠ABD=90°,
∴BD2+CE2=DH2即BD2+CE2=DE2
點評:兩角對應相等,兩三角形相似;注意使用前面得到相似的條件;可用兩個特殊結(jié)論得到相應的一般的結(jié)論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

當0°<α<60°時,下列關系式中有且僅有一個正確.
A.2sin(α+30°)=sinα+
3

B.2sin(α+30°)=2sinα+
3

C.2sin(α+30°)=
3
sinα+cosα

(1)正確的選項是
 
;
(2)如圖1,△ABC中,AC=1,∠B=30°,∠A=α,請利用此圖證明(1)中的結(jié)論;
(3)兩塊分別含45°和30°的直角三角板如圖2方式放置在同一平面內(nèi),BD=8
2
,求S△ADC
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點,∠BAC=∠AGF=90°,它們的斜邊長為4.若△ABC固定不動,△AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為D、E(點D不與點B重合,點E不與點C重合),設BE=a,CD=b.
(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對進行證明;
(2)求a•b的值;
(3)在旋轉(zhuǎn)過程中,當△AFG旋轉(zhuǎn)到如圖2的位置時,AG與BC交于點E,AF的延長線與CB的延長線交于點D,那么a•b的值是否發(fā)生了變化?為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)觀察與猜想:已知當0°<α<60°時,下列關系式有且只有一個正確,正確的是
C
C
(填代號)
A.2sin(30°+α)=sinα+
3
   
B.2sin(30°+α)=2sinα+
3

C.2sin(30°+α)=
3
sinα+cosα.
(2)探究與證明:如圖1,△ABC中,∠A=α,∠B=30°,AC=1,請利用圖1證明(1)中你猜想的結(jié)論;
(3)應用新知識解決問題:
兩塊分別含有45°和30°的直角三角板如圖2方式擺放在同一平面內(nèi),BD=8
2
,求S△ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在同一平面內(nèi),四條線AB、BC、CD、DA首尾順次相接,AD、BC相交于點O,AM、CN分別是∠BAD和∠BCD的平分線,∠B=α,∠D=β.
(1)如圖2,AM、CN相交于點P.
①當α=β時,判斷∠APC與α的大小關系,并說明理由.
②當α>β時,請直接寫出∠APC與α,β的數(shù)量關系.
(2)是否存在AM∥CN的情況?若存在,請判斷并說明α,β的數(shù)量關系;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案