【題目】如圖,OAOB是⊙O的半徑,OB2,OAOB,POA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過點(diǎn)Q的⊙O的切線交OA延長(zhǎng)線于點(diǎn)R

1)求證:RPRQ

2)若OPPQ,求PQ的長(zhǎng).

【答案】(1)證明見解析(2)

【解析】

1)連接OQQR為圓O的切線,得到∠OQR90°,即∠OQB+∠PQR=90°,OAOB垂直根據(jù)垂直的定義得到∠BOA=90°,所以∠B+∠BPO=90°,再根據(jù)對(duì)頂角相等及等角的余角相等,得到∠RPQ=RQP,根據(jù)等角對(duì)等邊得證;

2)根據(jù)OP=PQ等邊對(duì)等角得到∠POQ=PQO,又根據(jù)半徑OB=OQ,再根據(jù)等邊對(duì)等角得到∠B=BQO,在三角形OBQ由∠BOA為直角,設(shè)出∠B=PQO=POQ=x,根據(jù)三角形的內(nèi)角和定理列出關(guān)于x的方程,求出方程的解得到x的值,即為∠B的度數(shù)又∠RPQ=BPO=60°,PR=QR,所以三角形PRQ為等邊三角形所以PQ=QR,在直角三角形OQR根據(jù)30°的正切函數(shù)定義,OQ=OB=2即可求出QR的值,從而得到PQ的長(zhǎng).

1)連接OQ.∵QR是切線,∴∠OQR=90°,∴∠BQO+∠PQR=90°.

OAOB∴∠BOA=90°,∴∠B+∠BPO=90°,又∠BPO=RPQ,∴∠B+∠RPQ=90°.

OB=OQB=BQO∴∠RPQ=RQP,PR=QR;

2OP=PQ,∴∠POQ=PQO,

OB=OQ,∴∠B=PQO

設(shè)∠B=PQO=POQ=x,又∠BOP=90°,

根據(jù)三角形內(nèi)角和定理得

B+∠BOP+∠POQ+∠PQO=180°,x+90°+x+x=180°,

解得x=30°,即∠B=30°,∴∠RPQ=BPO=60°,PR=QR,∴△PQR為等邊三角形,PQ=QR=PR

在直角三角形OQR,OQ=OB=2,

根據(jù)銳角三角函數(shù)定義得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016湖南省株洲市)某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(jī)(滿分100分)和平時(shí)成績(jī)(滿分100分)兩部分組成,其中測(cè)試成績(jī)占80%,平時(shí)成績(jī)占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.

1)孔明同學(xué)的測(cè)試成績(jī)和平時(shí)成績(jī)兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績(jī)和平時(shí)成績(jī)各得多少分?

2)某同學(xué)測(cè)試成績(jī)?yōu)?/span>70分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?

3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績(jī)至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過點(diǎn)A作AFBC交BE的延長(zhǎng)線于點(diǎn)F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點(diǎn)A恰好落在邊BC的中點(diǎn)E處,AE=BD,那么tanABD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,反比例函數(shù)y=x0)的圖象經(jīng)過矩形OABC的對(duì)角線AC的中點(diǎn)M,分別與AB,BC交于點(diǎn)DE,若BD=3OA=4,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖①,在ABC中,∠A=120°,AB=AC=5,則ABC的外接圓半徑R的值為

問題探究

(2)如圖②O的半徑為13,弦AB=24,MAB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.

問題解決

(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線段ABAC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EFFP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).

圖① 圖② 圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量小山頂?shù)蔫F塔AB高度,王華和楊麗在平地上的C點(diǎn)處測(cè)得A點(diǎn)的仰角為45°,向前走了18m后到達(dá)D點(diǎn),測(cè)得A點(diǎn)的仰角為60°,B點(diǎn)的仰角為30°

1)求證:ABBD

2)求證鐵塔AB的高度.(結(jié)果精確到0.1米,其中1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,BO、CO是角平分線.

(1)∠ABC=50°,∠ACB=60°,求BOC的度數(shù),并說明理由.

(2)題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“A=70°”,求BOC的度數(shù).

(3)若A=n°,求BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案