【題目】如圖,在△ABC中,DF分別是BC、AC邊的中點(diǎn),連接DADF,且AD2DF,過點(diǎn)BAD的平行線交FD的延長(zhǎng)線于點(diǎn)E

1)求證:四邊形ABED為菱形;

2)若BD6,∠E60°,求四邊形ABEF的面積.

【答案】(1)詳見解析;(2)

【解析】

1)由三角形中位線定理得出DFAB,DF=AB,證出四邊形ABED是平行四邊形,證出AD=AB,得出四邊形ABED為菱形;
2)過BBGEFG,由菱形的性質(zhì)得出AB=BE=DE=BD=6,得出DF=3,EF=9,證出BDE是等邊三角形,得出DG=DE=3,故BG=DG=3,由梯形面積公式即可得出結(jié)果.

1)證明:在△ABC中,D、F分別是BC、AC邊的中點(diǎn),

DF是△ABC的中位線,

DFAB,DFAB,

BEAD

∴四邊形ABED是平行四邊形,

AD2DF,

ADAB

∴四邊形ABED為菱形;

2)過BBGEFG

∵四邊形ABED為菱形,

ABBEDEAD6

DF3,EF9,

∵∠E60°

∴△BDE是等邊三角形,

BGEF,

DGDE3

BGDG3,

∴四邊形ABEF的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,反比例函數(shù)在第一象限內(nèi)的圖象分別交,于點(diǎn)和點(diǎn),且的面積為

1)求直線的解析式;

2)求反比例函數(shù)解析式;

3)求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市要進(jìn)一批雞蛋進(jìn)行銷售,有兩家農(nóng)場(chǎng)可供貨.為了比較兩家提供的雞蛋單個(gè)大小,超市分別對(duì)這兩家農(nóng)場(chǎng)的雞蛋進(jìn)行抽樣檢測(cè),通過分析數(shù)據(jù)確定雞蛋的供貨商.

1)下列抽樣方式比較合理的是哪一種?請(qǐng)簡(jiǎn)述原因.

①分別從、兩家提供的一箱雞蛋中拿出最上面的兩層(共40枚)雞蛋,并分別稱出其中每一個(gè)雞蛋的質(zhì)量.

②分別從、兩家提供的一箱雞蛋中每一層隨機(jī)抽4枚(共40枚)雞蛋,并分別稱出其中每個(gè)雞蛋的質(zhì)量.

2)在用合理的方法抽出兩家提供的雞蛋各40枚后,分別稱出每個(gè)雞蛋的質(zhì)量(單位:),結(jié)果如表所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn)).

4547

4749

4951

5153

5355

農(nóng)場(chǎng)雞蛋

2

8

15

10

5

農(nóng)場(chǎng)雞蛋

4

6

12

14

4

①如果從這兩家農(nóng)場(chǎng)提供的雞蛋中隨機(jī)拿一個(gè),分別估計(jì)兩家雞蛋質(zhì)量在(單位:)范圍內(nèi)的概率(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn));

②如果你是超市經(jīng)營(yíng)者,試通過數(shù)據(jù)分析確定選擇哪家農(nóng)場(chǎng)提供的雞蛋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),與軸交于點(diǎn),連接.點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為

(1)求此拋物線的表達(dá)式;

(2)過點(diǎn)軸,垂足為點(diǎn),于點(diǎn).試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn),使得以為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由;

(3)過點(diǎn),垂足為點(diǎn).請(qǐng)用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí)有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,是常數(shù),且),經(jīng)過點(diǎn),與軸交于點(diǎn).

(Ⅰ)求拋物線的解析式;

(Ⅱ)若點(diǎn)是射線上一點(diǎn),過點(diǎn)軸的垂線,垂足為點(diǎn),交拋物線于點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,線段的長(zhǎng)為,求出之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)在線段上時(shí),設(shè),已知,是以為未知數(shù)的一元二次方程為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)在拋物線上,連接,,,且平分,求出值及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C1yax22ax3aa≠0)和點(diǎn)A0,﹣3),將點(diǎn)A向右平移2個(gè)單位,再向上平移5個(gè)單位,得到點(diǎn)B

1)求點(diǎn)B的坐標(biāo);

2)求拋物線C1的對(duì)稱軸;

3)把拋物線C1沿x軸翻折,得到一條新拋物線C2,拋物線C2與拋物線C1組成的圖象記為G,若圖象G與線段AB恰有一個(gè)交點(diǎn)時(shí),結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).

托勒密定理:

托勒密(Ptolemy)(公元90年~公元168年),希臘著名的天文學(xué)家,他的要著作《天文學(xué)大成》被后人稱為偉大的數(shù)學(xué)書,托勒密有時(shí)把它叫作《數(shù)學(xué)文集》,托勒密從書中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.

托勒密定理:

圓內(nèi)接四邊形中,兩條對(duì)角線的乘積等于兩組對(duì)邊乘積之和.

已知:如圖1,四邊形ABCD內(nèi)接于⊙O

求證:ABCD+BCADACBD

下面是該結(jié)論的證明過程:

證明:如圖2,作∠BAE=∠CAD,交BD于點(diǎn)E

∴∠ABE=∠ACD

∴△ABE∽△ACD

ABCDACBE

∴∠ACB=∠ADE(依據(jù)1

∵∠BAE=∠CAD

∴∠BAE+EAC=∠CAD+EAC

即∠BAC=∠EAD

∴△ABC∽△AED(依據(jù)2

ADBCACED

ABCD+ADBCACBE+ED

ABCD+ADBCACBD

任務(wù):(1)上述證明過程中的依據(jù)1”依據(jù)2”分別是指什么?

2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時(shí),托勒密定理就是我們非常熟知的一個(gè)定理:   

(請(qǐng)寫出)

3)如圖3,四邊形ABCD內(nèi)接于⊙O,AB3,AD5,∠BAD60°,點(diǎn)C的中點(diǎn),求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,連接點(diǎn)上一點(diǎn),使得連接于點(diǎn),作的延長(zhǎng)線于點(diǎn)

1)求證:

2)若的長(zhǎng).

3)在(2)的條件下,將沿著對(duì)折得到點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接試求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)yk0,x0)的圖象上,ABx軸于點(diǎn)B,OCAB于點(diǎn)D,若CDOD,則AODBCD的面積比為__

查看答案和解析>>

同步練習(xí)冊(cè)答案