【題目】如圖,是的直徑,,是的弦,且,與交于點(diǎn),連接,若,則的度數(shù)是( )
A.B.C.D.
【答案】C
【解析】
連接OE、FB.在△EFO中,由等邊對(duì)等角得到∠FEO的度數(shù),證明△EFO≌△EBO,得到∠BEO=∠FEO,從而得到∠FEB的度數(shù).在△EFB中,根據(jù)等邊對(duì)等角和三角形內(nèi)角和定理得出∠EFB的度數(shù),進(jìn)而得到∠OFB的度數(shù).在△OFB中,根據(jù)等邊對(duì)等角得出∠OBF的度數(shù),根據(jù)圓周角定理即可得到∠AOF的度數(shù).
連接OE、FB.
∵OF=OE,∴∠FEO=∠EFO=35°.
在△EFO和△EBO中,∵EF=BE,OE=OE,OF=OB,
∴△EFO≌△EBO,∴∠BEO=∠FEO=35°,∴∠FEB=70°.
∵EF=EB,∴∠EFB=∠EBF=(180°-70°)÷2=55°,∴∠OFB=∠EFB-∠EFO=55° -35°=20°.
∵OF=OB,∴∠OBF=∠OFB=20°,∴∠AOF=2∠OBF=40°.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求出拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】女本柔弱,為母則剛,說(shuō)的是母親對(duì)子女無(wú)私的愛(ài),母愛(ài)偉大,值此母親節(jié)來(lái)臨之際,某花店推出一款康乃馨花束,經(jīng)過(guò)近幾年的市場(chǎng)調(diào)研發(fā)現(xiàn),該花束在母親節(jié)的銷(xiāo)售量(束)與銷(xiāo)售單價(jià)(元)之間滿足如圖所示的一次函數(shù)關(guān)系,已知該花束的成本是每束100元.
(1)求出關(guān)于的函數(shù)關(guān)系式(不要求寫(xiě)的取值范圍);
(2)設(shè)該花束在母親節(jié)盈利為元,寫(xiě)出關(guān)于的函數(shù)關(guān)系式:并求出當(dāng)售價(jià)定為多少元時(shí),利潤(rùn)最大?最大值是多少?
(3)花店開(kāi)拓新的進(jìn)貨渠道,以降低成本.預(yù)計(jì)在今后的銷(xiāo)售中,母親節(jié)期間該花束的銷(xiāo)售量與銷(xiāo)售單價(jià)仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷(xiāo)售單價(jià)為200元,且銷(xiāo)售利潤(rùn)不低于9900元的銷(xiāo)售目標(biāo),該花束每束的成本應(yīng)不超過(guò)多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的日益提高,人們?cè)絹?lái)越喜歡過(guò)節(jié),節(jié)日的儀式感日漸濃烈.某校舉行了“女神節(jié)暖心特別行動(dòng)”,從中隨機(jī)調(diào)査了部分同學(xué)的暖心行動(dòng),并將其分為A,B,C,D四種類(lèi)型(分別對(duì)應(yīng)送服務(wù)、送鮮花、送紅包、送話語(yǔ)).現(xiàn)根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)該校共抽查了多少名同學(xué)的暖心行動(dòng)?
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)若該校共有2400名同學(xué),請(qǐng)估計(jì)該校進(jìn)行送鮮花行動(dòng)的同學(xué)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件,銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案
方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
觀察猜想
如圖1,有公共直角頂點(diǎn)的兩個(gè)不全等的等腰直角三角尺疊放在一起,點(diǎn)在上,點(diǎn)在上.
(1)在圖1中,你發(fā)現(xiàn)線段,的數(shù)量關(guān)系是___________,直線,的位置關(guān)系是________.
操作發(fā)現(xiàn)
(2)將圖1中的繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一個(gè)銳角得到圖2,這時(shí)(1)中的兩個(gè)結(jié)論是否成立?作出判斷并說(shuō)明理由;
拓廣探索
(3)如圖3,若只把“有公共直角頂點(diǎn)的兩個(gè)不全等的等腰直角三角尺”改為“有公共頂角為(銳角)的兩個(gè)不全等等腰三角形”,繞點(diǎn)逆時(shí)針旋轉(zhuǎn)任意一個(gè)銳角,這時(shí)(1)中的兩個(gè)結(jié)論仍然成立嗎?作出判斷,不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車(chē)相遇時(shí)停止.甲車(chē)行駛一段時(shí)間后,因故停車(chē)0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車(chē)之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車(chē)行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車(chē)沒(méi)有故障停車(chē),求可以提前多長(zhǎng)時(shí)間兩車(chē)相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:?jiǎn)栴}情境:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以菱形為對(duì)象,研究菱形旋轉(zhuǎn)中的問(wèn)題:已知,在菱形中,為對(duì)角線,,,將菱形繞頂點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位).旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動(dòng)中提出下列問(wèn)題,請(qǐng)你幫他們解決.
(1)如圖1,若旋轉(zhuǎn)角,與相交于點(diǎn),與相交于點(diǎn).請(qǐng)說(shuō)明線段與的數(shù)量關(guān)系;
(2)如圖2,連接,菱形旋轉(zhuǎn)的過(guò)程中,當(dāng)與互相垂直時(shí),的長(zhǎng)為______;
(3)如圖3,若旋轉(zhuǎn)角為時(shí),分別連接,,過(guò)點(diǎn)分別作,,連接,菱形旋轉(zhuǎn)的過(guò)程中,發(fā)現(xiàn)在中存在長(zhǎng)度不變的線段,請(qǐng)求出長(zhǎng)度;
操作探究:(4)如圖4,在(3)的條件下,請(qǐng)判斷以,,三條線段長(zhǎng)度為邊的三角形是什么特殊三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com