【題目】如圖,△ABC為圓O的內(nèi)接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長(zhǎng);
(2)延長(zhǎng)DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?
【答案】(1)見解析,AB=2;(2)直線FA與⊙O相切,見解析.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和圓周角定理可得∠ABC=∠D,由∠BAE=∠DAB故△ABE∽△ADB,進(jìn)而可得 ;代入數(shù)據(jù)即可得求解.
(2)連接OA,根據(jù)勾股定理可得BF=BO=AB;易得∠OAF=90°,可得直線FA與⊙O相切.
(1)證明:∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,
∴ ,
∴AB2=ADAE=(AE+ED)AE=(2+4)×2=12,
∴AB=2;
(2)解:直線FA與⊙O相切.
理由如下:
連接OA,
∵BD為⊙O的直徑,
∴∠BAD=90°,
∴BD=,
∴BF=BO=.
∵AB=2,
∴BF=BO=AB,
∴∠OAF=90°.
∴直線FA與⊙O相切.
故答案為:(1)見解析,AB=2;(2)直線FA與⊙O相切,見解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),將△BCE沿BE折疊后得到△BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長(zhǎng)交AD于點(diǎn)G.若,則=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別是A(3,4)、B(1,2)、C(5,3)
(1)將△ABC平移,使得點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(﹣2,4),在如圖的坐標(biāo)系中畫出平移后的△A1B1C1;
(2)將△A1B1C1繞點(diǎn)C1逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C1并直接寫出A2、B2的坐標(biāo);
(3)求△A2B2C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),(3,0).
(1)求此二次函數(shù)的解析式;
(2)在直角坐標(biāo)系中描點(diǎn),并畫出該函數(shù)圖象;
x | … | _____ | ____ | ____ | _____ | _____ | … |
y | … | _____ | ____ | ____ | ____ | _____ | … |
(3)根據(jù)圖象回答:當(dāng)函數(shù)值y<0時(shí),求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象交x軸于A、B兩點(diǎn)其中點(diǎn)A在點(diǎn)B的左側(cè),交y軸正半軸于點(diǎn)C,且,點(diǎn)D在該函數(shù)的第一象限內(nèi)的圖象上.
求點(diǎn)A、點(diǎn)B的坐標(biāo);
若的最大面積為平方單位,求點(diǎn)D的坐標(biāo)及二次函數(shù)的關(guān)系式;
若點(diǎn)D為該函數(shù)圖象的頂點(diǎn),且是直角三角形,求此二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線上的兩點(diǎn).若AE= ,∠EAF=135°,則以下結(jié)論正確的是( )
A. DE=1 B. tan∠AFO= C. AF= D. 四邊形AFCE的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過(guò)A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、C兩點(diǎn),與x軸交于點(diǎn)D,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,點(diǎn)O是線BD的中點(diǎn),AD=2,cos∠ADB=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x為何值時(shí),y1≥y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知,,點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F分別是CA,CB邊的中點(diǎn),過(guò)點(diǎn)P作于D,設(shè),圖中某條線段的長(zhǎng)為y,如果表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是
A. PDB. PEC. PCD. PF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com