【題目】如圖,邊長不等的正方形依次排列,第一個(gè)正方形的邊長為1,第二個(gè)正方形的邊長是第一個(gè)正方形邊長的2倍,第三個(gè)正方形的邊長是第二個(gè)正方形邊長的2倍,依此類推,…….若陰影三角形的面積從左向右依次記為S1、S2、S3、……、Sn,則S4的值為_________.
【答案】2048
【解析】∵函數(shù)y=x與x軸的夾角為45°,
∴直線y=x與正方形的邊圍成的三角形是等腰直角三角形,如圖所示:
∵A(8,4),
∴第四個(gè)正方形的邊長為8,
第三個(gè)正方形的邊長為4,
第二個(gè)正方形的邊長為2,
第一個(gè)正方形的邊長為1,
…,
第n個(gè)正方形的邊長為2n-1,
由圖可知,S1= S1=×1×1+×(1+2)×2-×(1+2)×2=,
S2=×4×4+×(4+8)×8-×(4+8)×8=8,
…,
Sn為第2n與第2n-1個(gè)正方形中的陰影部分,
第2n個(gè)正方形的邊長為22n-1,第2n-1個(gè)正方形的邊長為22n-2,
Sn=22n-222n-2=24n-5.
當(dāng)n=4時(shí)S4=24n-5=211=2048;
故答案是:2048。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):2,1,x,7,3,5,3,2的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )
A. 2 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長為a,寬為b(a>b)的長方形的周長為14,面積為10,則ab(a+b)的值為( )
A. 40 B. 50 C. 60 D. 70
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左到右的變形,屬于因式分解的是( )
A. (a+1)(a-1)=a2-1 B. 2a-2b=2(a-b)
C. a2-2a+1=a(a-2)+1 D. a+2b=(a+b)+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列添括號(hào)錯(cuò)誤的是( )
A. 3-4x=-(4x-3)
B. (a+b)-2a-b=(a+b)-(2a+b)
C. -x2+5x-4=-(x2-5x+4)
D. -a2+4a+a3-5=-(a2-4a)-(a3+5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=10cm,點(diǎn)C是直線AB上一點(diǎn),BC=4cm,若M是AB的中點(diǎn),N是BC的中點(diǎn),則線段MN的長度是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多項(xiàng)式中每一項(xiàng)都含有的________,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式. 把該公因式提取出來進(jìn)行因式分解的方法,叫做________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com