【題目】已知,如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC,(已知)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠DCA(等量代換)
∴EF∥CD( )
∴∠AEF=∠ADC( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°(等量代換)
∴CD⊥AB(垂直定義)
【答案】同位角相等,兩直線平行;∠ACD; 兩直線平行,內(nèi)錯(cuò)角相等;同位角相等,兩直線平行;兩直線平行,同位角相等;垂直定義.
【解析】試題分析:已知DG⊥BC,AC⊥BC,根據(jù)垂直于同一條直線的兩直線平行可得DG∥AC,由兩直線平行,內(nèi)錯(cuò)角相等可得∠2=∠ACD,已知∠1=∠2,等量代換得∠1=∠DCA,由同位角相等,兩直線平行可得EF∥CD,由兩直線平行,同位角相等可得∠AEF=∠ADC,已知EF⊥AB,由垂直定義可得∠AEF=90°,等量代換得∠ADC=90°,由垂直定義得CD⊥AB.
試題解析:
證明:∵DG⊥BC,AC⊥BC(已知),
∴DG∥AC(垂直于同一條直線的兩直線平行 ),
∴∠2=∠ACD ( 兩直線平行,內(nèi)錯(cuò)角相等 ),
∵∠1=∠2(已知),
∴∠1=∠DCA(等量代換),
∴EF∥CD(同位角相等,兩直線平行),
∴∠AEF=∠ADC(兩直線平行,同位角相等),
∵EF⊥AB(已知),
∴∠AEF=90°(垂直定義),
∴∠ADC=90°(等量代換),
∴CD⊥AB(垂直定義).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一時(shí)刻,兩根長(zhǎng)度不等的竿子置于陽(yáng)光之下,而它們的影長(zhǎng)相等,那么這兩根竿子的相對(duì)位置是( )
A. 兩根都垂直于地面B. 兩根平行斜插在地上C. 兩根不平行D. 兩根平行倒在地上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在坐標(biāo)平面內(nèi)有一點(diǎn)P(x,y),若xy=0,那么點(diǎn)P的位置在( )
A. 原點(diǎn) B. x軸上
C. y軸上 D. 坐標(biāo)軸上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件.后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷(xiāo)量可增加10件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,結(jié)合題意寫(xiě)出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C的“完美點(diǎn)”的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PA-PB|=2,則稱點(diǎn)P為⊙C的“完美點(diǎn)”,如圖為⊙C及其“完美點(diǎn)”P(pán)的示意圖.
(1)當(dāng)⊙O的半徑為2時(shí),
①點(diǎn)M(,0) ⊙O的“完美點(diǎn)”,點(diǎn)N(0,1) ⊙O的“完美點(diǎn)”,點(diǎn)T(-,- ) ⊙O的“完美點(diǎn)”(填“是”或者“不是”);
②若⊙O的“完美點(diǎn)”P(pán)在直線y=x上,求PO的長(zhǎng)及點(diǎn)P的坐標(biāo);
(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點(diǎn)”,求圓心C的縱坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過(guò)點(diǎn)B的切線AE與CD的延長(zhǎng)線交于點(diǎn)A, ,OE交BC于點(diǎn)F.
(1)求證:OE∥BD;
(2)當(dāng)⊙O的半徑為5, 時(shí),求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com