【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點(diǎn)處的影長DE=3 m,沿BD方向行走到達(dá)G點(diǎn),DG=5 m,這時大華的影長GH=4 m如果大華的身高為2 m,求路燈桿AB的高度.

【答案】12m

【解析】

設(shè)路燈桿AB的高度是x m,由CDAB,FGAB,得△CDE∽△ABE,△FGH∽△ABH,可得,,又CDFG,所以,即,解方程可得BD.再由 ,得,可求AB.

解:設(shè)路燈桿AB的高度是x m,

CDAB,F(xiàn)GAB,

∴△CDE∽△ABE,FGH∽△ABH

,

CD=FG,

,

解得BD=15,經(jīng)檢驗,BD=15是原方程的解.

又∵,

,解得x=12,經(jīng)檢驗,x=12是原方程的解.

答:路燈桿AB的高度是12 m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運(yùn)動,某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;

(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+4(k≠0)與y軸交于點(diǎn)A.直線y=﹣2x+1與直線y=kx+4(k≠0)交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B的橫坐標(biāo)為﹣1.

(1)求點(diǎn)B的坐標(biāo)及k的值;

(2)直線y=﹣2x+1與直線y=kx+4y軸所圍成的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,∠B30°AD是∠BAC的角平分線,DEAB,垂足為點(diǎn)E,DE1BE,則ABC的周長是( )

A.6+B.3+2C.6+2D.3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠A36°,DAC上一點(diǎn),且BDBC,過點(diǎn)D分別作DEABDFBC,垂足分別是E,F,下列結(jié)論:①BD是∠ABC的平分線;②DAC的中點(diǎn);③DE垂直平分AB;④ABBC+CD;其中正確的結(jié)論是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AEADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD和點(diǎn)P,當(dāng)點(diǎn)P在圖1中的位置時,則有結(jié)論:SPBC=SPAC+SPCD

理由:過點(diǎn)PEF垂直BC,分別交AD、BCE、F兩點(diǎn).

SPBC+SPAD=BCPF+ADPE=BC(PF+PE)=BCEF=S矩形ABCD

(1)請補(bǔ)全以上證明過程.

(2)請你參考上述信息,當(dāng)點(diǎn)P分別在圖1、圖2中的位置時,SPBC、SPAC、SPCD又有怎樣的數(shù)量關(guān)系?請寫出你對上述兩種情況的猜想,并選擇其中一種情況的猜想給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,﹣3),點(diǎn)B(﹣1,﹣3),點(diǎn)C(﹣1,﹣1).

(1)畫出△ABC;

(2)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出A1點(diǎn)的坐標(biāo):   ;

(3)以O為位似中心,在第一象限內(nèi)把△ABC擴(kuò)大到原來的兩倍,得到△A2B2C2,并寫出A2點(diǎn)的坐標(biāo):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+5x+nx軸交于點(diǎn)A(1,0)和點(diǎn)C,y軸交于點(diǎn)B.

(1)求拋物線的解析式;

(2)ABC的面積;

(3)Py軸上一點(diǎn),PAB是以AB為腰的等腰三角形,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案