如圖,利用方格紙上的格點(diǎn)畫圖,并標(biāo)上相應(yīng)的字母.
(1)過C點(diǎn)畫EFAB;
(2)過C點(diǎn)畫線段AB的垂線,垂足為D;
(3)點(diǎn)C到直線AB的距離就是線段______的長;
(4)將線段AB繞O點(diǎn)旋轉(zhuǎn)180°,得到線段GH.
(1)(2)如圖所示;

(3)點(diǎn)C到直線AB的距離就是線段CD的長;
(4)GH如圖所示.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,A(-4,-2),B(-2,-2),C(-1,0)
(1)將△ABC繞C點(diǎn)順時針旋轉(zhuǎn)90°,得△A1B1C,則點(diǎn)A1的坐標(biāo)為______.
(2)將△A1B1C向右平移6個單位得△A2B2C2,則點(diǎn)B2的坐標(biāo)為______.
(3)從△ABC到△A2B2C2能否看作是繞某一點(diǎn)作旋轉(zhuǎn)變換?若能,則旋轉(zhuǎn)中心坐標(biāo)為______在旋轉(zhuǎn)變換中AB所掃過的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將直角三角形ABC(其中∠ABC=60°)繞點(diǎn)B順時針旋轉(zhuǎn)一個角度到三角形A′B′C′的位置,使得點(diǎn)A,B,C′在同一直線上,那么這個轉(zhuǎn)動的角度是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,若O是正方形ABCD的中心,直角∠MON繞O點(diǎn)旋轉(zhuǎn),則∠MON與正方形圍成的四邊形的面積是正方形ABCD面積的______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,P是正方形ABCD的邊CD上一點(diǎn),∠BAP的角平分線交BC于Q,
試說明AP=DP+BQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)40°得△A′B′C,若AC⊥A′B′,則∠BAC等于( 。
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知P為正方形ABCD的對角線AC上一點(diǎn)(不與A、C重合),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F.
(1)試說明:BP=DP;
(2)如圖2,若正方形PECF繞點(diǎn)C按逆時針方向旋轉(zhuǎn),在旋轉(zhuǎn)過程中是否總有BP=DP?若是,請給予證明;若不是,請畫圖用反例加以說明;
(3)試選取正方形ABCD的兩個頂點(diǎn),分別與正方形PECF的兩個頂點(diǎn)連接,使得到的兩條線段在正方形PECF繞點(diǎn)C按逆時針方向旋轉(zhuǎn)的過程中長度始終相等,并證明你的結(jié)論;
(4)旋轉(zhuǎn)的過程中AP和DF的長度是否相等?若不等,直接寫出AP:DF=______;
(5)若正方形ABCD的邊長是4,正方形PECF的邊長是1.把正方形PECF繞點(diǎn)C按逆時針方向旋轉(zhuǎn)的過程中,△PBD的面積是否存在最大值、最小值?如果存在,試求出最大值、最小值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O內(nèi)有折線OABC,點(diǎn)B、C在圓上,點(diǎn)A在⊙O內(nèi),其中OA=4cm,BC=10cm,∠A=∠B=60°,則AB的長為( 。
A.5cmB.6cmC.7cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

畫圖操作:
圖①、圖②均為7×6的正方形網(wǎng)格,點(diǎn)A、B、C在格點(diǎn)上.
(1)在圖①中確定格點(diǎn)D,并畫出以A、B、C、D為頂點(diǎn)的四邊形,使其為軸對稱圖形.(畫一個即可)
(2)在圖②中確定格點(diǎn)E,并畫出以A、B、C、E為頂點(diǎn)的四邊形,使其為中心對稱圖形.(畫一個即可)
(3)在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,△ABC的三個頂點(diǎn)都在格點(diǎn)上(每個小方格的頂點(diǎn)叫格點(diǎn)).畫出△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°后的△A′B′C′.

查看答案和解析>>

同步練習(xí)冊答案