【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)D從點(diǎn)C出發(fā),以2cm/s的速度沿折線C→A→B向點(diǎn)B運(yùn)動,同時,點(diǎn)E從點(diǎn)B出發(fā),以1cm/s的速度沿BC邊向點(diǎn)C運(yùn)動,E到C時兩點(diǎn)同時停止運(yùn)動。設(shè)點(diǎn)E運(yùn)動的時間為ts().
(1)AB=__________cm, CE=__________cm;
(2)當(dāng)△BDE是直角三角形時,求t的值;
(3)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,
①設(shè)平行四邊形CDEF的面積為Scm2,求S于t的關(guān)系式;
②是否存在某個時刻t,使□CDEF為菱形?若存在,求出t的值;若不存在,請說明理由.
【答案】(1)10,8-t;(2)或;(3)①見解析,②存在, .
【解析】試題分析:(1)直接利用勾股定理進(jìn)行求解;
(2)當(dāng)△BDE是直角三角形時,∠B不可能為直角,所以分兩種情況討論:i)圖1,當(dāng)∠BED=90°時;ii)圖2,當(dāng)∠EDB=90°時;利用相似求邊,從而求出t的值;
(3)①根據(jù)點(diǎn)D的位置分兩種情況討論:點(diǎn)D在邊AC上時,0<t≤3;點(diǎn)D在邊AB上時,3<t<8;CDEF的面積都等于△CDE面積的二倍;
②當(dāng)CDEF為菱形,對角線CE和DF互相垂直且平分,利用BH=BE+EH列式計算.
試題解析:(1)由勾股定理得:AB==10;CE=8-t
(2)①如圖1,
當(dāng)∠BED=90°時,△BDE是直角三角形,
則BE=t,AC+AD=2t,
∴BD=6+10-2t=16-2t,
∵∠BED=∠C=90°,
∴DE∥AC,
∴即
解得t=
②如圖2,當(dāng)∠EDB=90°時,△BDE是直角三角形,則BE=t,BD=16-2t,
∴即
解得t=
(3)①如圖3,
當(dāng)0<t≤3時,BE=t,CD=2t,CE=8-t,
∴S□CDEF=2S△CDE= ==,
如圖4,當(dāng)3<t<8時,BE=t,CE=8-t,過D作DH⊥BC,垂足為H,
∴S□CDEF=2S△CDE= ==;
∴S于t的函數(shù)關(guān)系式為:當(dāng)0<t≤3時,S=,當(dāng)3<t<8時,S=.
②存在,如圖5,當(dāng)□CDEF為菱形時,DH⊥CE,
由CD=DE得:CH=HE,
BH=,BE=t,EH=
∴BH=BE+EH,即
解得t=,
即當(dāng)t=時,□CDEF為菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對角線BD向點(diǎn)D勻速運(yùn)動,速度為4cm/s,過點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動,速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時出發(fā),設(shè)它們的運(yùn)動時間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進(jìn)行探究,并解答下列問題:
①證明:在運(yùn)動過程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動過程中,當(dāng)QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,先把一矩形紙片上下對折,設(shè)折痕為;如圖②,再把
點(diǎn) 疊在折痕線上,得到 .過點(diǎn)作,分別交、于點(diǎn)、.
(1)求證: ∽;
(2)在圖②中,如果沿直線再次折疊紙片,點(diǎn)能否疊在直線上?請說明理由;
(3)在(2)的條件下,若,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動陽光體育運(yùn)動的廣泛開展,引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,走到陽光,積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運(yùn)動鞋供學(xué)生借用,現(xiàn)從各年的隨機(jī)抽取了部分學(xué)生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次隨機(jī)抽樣的學(xué)生數(shù)是多少?A中值是多少?
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運(yùn)動鞋,建議購買35號運(yùn)動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過點(diǎn)作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點(diǎn)在邊上移動時,折痕的端點(diǎn),也隨之移動.
①當(dāng)點(diǎn)與點(diǎn)重合時(如圖),求菱形的邊長;
②若限定,分別在邊,上移動,求出點(diǎn)在邊上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△OAB的位置如圖所示.將△OAB繞點(diǎn)O順時針旋轉(zhuǎn)90°得△OA1B1;再將△OA1B1繞點(diǎn)O順時針旋轉(zhuǎn)90°得△OA2B2;再將△OA2B2繞點(diǎn)O順時針旋轉(zhuǎn)90°得△OA3B3;…依此類推,第9次旋轉(zhuǎn)得到△OA9B9,則頂點(diǎn)A的對應(yīng)點(diǎn)A9的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com