【題目】中華人民共和國道路交通管理條例規(guī)定:小汽車在城街路上行駛速度不得超過km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方m處,過了2s后,測得小汽車與車速檢測儀間距離為m,這輛小汽車超速了嗎?

【答案】超速了

【解析】

試題分析:在直角三角形ABC中,已知AB,AC根據(jù)勾股定理即可求出小汽車2秒內(nèi)行駛的距離BC,根據(jù)小汽車在兩秒內(nèi)行駛的距離BC可以求出小汽車的平均速度,求得數(shù)值與70千米/時比較,即可計算小汽車是否超速.

在直角ABC中,已知AC=30米,AB=50米,

且AB為斜邊,,

小汽車在2秒內(nèi)行駛了40米,所以平均速度為20米/秒,

20米/秒=72千米/時,72>70,故這輛小汽車超速了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.

1)在圖中畫出與關(guān)于直線成軸對稱的△A′B′C′;

2)線段CC′被直線      ;

3△ABC的面積為      ;

4)在直線上找一點P,使PB+PC的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構(gòu)成相等的角,求此時t的值為多少?

(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正方形ABCD對角線BD上一點,PEDC,PFBCE、F分別為垂足.

1)求證:APD≌△CPD

2)若CF=3,CE=4,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠3=4,要說明ABC≌△DCB,

1)若以“SAS”為依據(jù),則需添加一個條件是________

2)若以“AAS”為依據(jù),則需添加一個條件是________

3)若以“ASA”為依據(jù),則需添加一個條件是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D是邊BC上的一點,DEABDFAC,垂足分別是E、FEFBC

1)求證:BDE≌△CDF;

2)若BC=2AD,求證:四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠C=90°,點OAB上的一點,以點O為圓心,OA為半徑的圓弧與BC相切于點D,交AC于點E,連接AD

1)求證:AD平分∠BAC;

2)已知AE=2,DC=,求圓弧的半徑.

查看答案和解析>>

同步練習(xí)冊答案