【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
【答案】解:(1)證明:連接OD,
∵OA=OD,∴∠OAD=∠ODA。
∵∠OAD=∠DAE,∴∠ODA=∠DAE。∴DO∥MN。
∵DE⊥MN,∴∠ODE=∠DEM =90°,即OD⊥DE。
∵D在⊙O上,∴DE是⊙O的切線。
(2)連接CD,
∵∠AED=90°,DE=6,AE=3,∴AD=。
∵AC是⊙O的直徑,∴∠ADC=∠AED =90°。
∵∠CAD=∠DAE,∴△ACD∽△ADE。 ∴,即。
解得:AC=15。
∴⊙O的半徑是7.5cm。
【解析】試題分析:(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.
(2)由直角三角形的特殊性質(zhì),可得AD的長(zhǎng),又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.
試題解析:(1)證明:連接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD為⊙O的半徑,
∴DE是⊙O的切線.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
連接CD.
∵AC是⊙O的直徑,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
則AC=15(cm).
∴⊙O的半徑是7.5cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)學(xué)習(xí)同學(xué)們已經(jīng)體會(huì)到靈活運(yùn)用整式乘法公式給計(jì)算和化簡(jiǎn)帶來(lái)的方便、快捷.相信通過(guò)下面材料的學(xué)習(xí)、探究,會(huì)使你大開(kāi)眼界,并獲得成功的喜悅.
例:用簡(jiǎn)便方法計(jì)算195×205.
解:195×205
=(200-5)(200+5) ①
=2002-52 ②
=39975.
(1)例題求解過(guò)程中,第②步變形是利用____________(填乘法公式的名稱);
(2)用簡(jiǎn)便方法計(jì)算:
①9×11×101×10 001;
②(2+1)(22+1)(24+1)…(232+1)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長(zhǎng)線于點(diǎn)D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過(guò)B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春季流感爆發(fā),某校為了解全體學(xué)生患流感情況,隨機(jī)抽取部分班級(jí)對(duì)患流感人數(shù)的進(jìn)行調(diào)查,發(fā)現(xiàn)被抽查各班級(jí)患流感人數(shù)只有1名、2名、3名、4名、5名、6名這六種情況,并制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)抽查了 個(gè)班級(jí),并將該條形統(tǒng)計(jì)圖(圖2)補(bǔ)充完整;
(2)扇形圖(圖1)中患流感人數(shù)為4名所在扇形的圓心角的度數(shù)為 ;
(3)若該校有45個(gè)班級(jí),請(qǐng)估計(jì)該校此次患流感的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】頻數(shù)m、頻率p和數(shù)據(jù)總個(gè)數(shù)n之間的關(guān)系是( )
A. n=mp B. p=mn
C. n=m+p D. m=np
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家節(jié)能減排的號(hào)召,鼓勵(lì)居民節(jié)約用電,各省先后出臺(tái)了居民用電“階梯價(jià)格”制度,如下表是某省的電價(jià)標(biāo)準(zhǔn)(每月).例如:方女士家5月份用電500度,電費(fèi)=180×0.6+220×二檔電價(jià)+100×三檔電價(jià)=352元;李先生家5月份用電460度,交費(fèi)316元.請(qǐng)問(wèn)表中二檔電價(jià)、三檔電價(jià)各是多少?
階梯 | 電量 | 電價(jià) |
一檔 | 0~180度 | 0.6元/度 |
二檔 | 181~400度 | 二檔電價(jià) |
三檔 | 401度及以上 | 三檔電價(jià) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC.
(1)當(dāng)∠B=40°時(shí),求∠ADC的度數(shù);
(2)若AB=10cm,CD=4cm,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D.求證:
(1)△BEC≌△CDA;
(2)DE=AD﹣BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com