【題目】如圖(1),已知A(a,0),B(0,b),且滿(mǎn)足a=.
(1)求A、B兩點(diǎn)坐標(biāo);
(2)在(1)的條件下,Q為直線AB上一點(diǎn),且滿(mǎn)足S△AOQ=2S△BOQ,求Q點(diǎn)的縱坐標(biāo);
(3)如圖(2),E點(diǎn)在y軸上運(yùn)動(dòng),且在B點(diǎn)上方,過(guò)E作AB的平行線,交x軸于點(diǎn)C,∠CEO的平分線與∠BAO的平分線交于點(diǎn)F.問(wèn):點(diǎn)E在運(yùn)動(dòng)過(guò)程中,∠F的大小是否發(fā)生改變?若改變,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出它的值.
【答案】(1)A(﹣6,0),B(0,4);(2)Q點(diǎn)縱坐標(biāo)為或8;(3)∠F的大小不變,∠F=135°
【解析】
(1)根據(jù)二次根式有意義的條件列出不等式,分別求出a、b,得到點(diǎn)A、B兩點(diǎn)坐標(biāo);
(2)分Q在線段AB上、Q在點(diǎn)B上方、Q在A點(diǎn)下方三種情況,根據(jù)三角形的面積公式計(jì)算;
(3)根據(jù)角平分線的定義、三角形內(nèi)角和定理、平行線的性質(zhì)計(jì)算,得到答案.
(1)由題意可得:b﹣4≥0,4﹣b≥0,
∴b=4,
則a=﹣6,
∴A(﹣6,0),B(0,4);
(2)∵A(﹣6,0),B(0,4),
∴OA=6,OB=4,
∴S△AOB=×4×6=12,
∵Q在直線AB上,
所以點(diǎn)Q位置有3種可能,設(shè)點(diǎn)Q到x軸的距離為h,
當(dāng)Q在線段AB上時(shí),
∵S△AOQ=2S△BOQ,
∴S△AOQ=8,S△BOQ=4,
∴×6×h=8,
解得,h=,
∴Q點(diǎn)縱坐標(biāo)為;
當(dāng)Q在點(diǎn)B上方時(shí),∵S△AOQ=2S△BOQ,S△AOQ=S△AOB+S△BOQ,
∴S△AOB=S△BOQ,
∴S△AOQ=24,
∴×6×h=24,
解得,h=8,
∴Q點(diǎn)縱坐標(biāo)為8;
當(dāng)Q在A點(diǎn)下方時(shí),不符合題意,
綜上所述,Q點(diǎn)縱坐標(biāo)為或8;
(3)∠F的大小不變,
理由如下:∵AB∥CE,
∴∠BAO=∠ECO,∠ADF=∠CEF,
∵∠EOC=90°,
∴∠ECO+∠CEO=90°,
∵AF平分∠BAO,EF平分∠CEO,
∴∠DAF=∠BAO,∠CEF=∠CEO,
∴∠DAF=∠ECO,∠ADF=∠CEO
∴∠DAF+∠ADF=∠ECO+ ∠CEO
=(∠ECO+∠CEO)
=×90°
=45°,
∴∠F=180°﹣(∠DAF+∠ADF)
=180°﹣45°
=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠C =70°,求的度數(shù);
(2)若∠C =α,請(qǐng)用含α的式子表示;
(3)連接MB,若AB =8,BC =6.
①求△的周長(zhǎng);
②在直線上是否存在點(diǎn)P,使(PB+CP)的值最?若存在,標(biāo)出點(diǎn)P的位置并求(PB+CP)的最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(﹣3a﹣4,2+a),解答下列各題:
(1)若點(diǎn)P在x軸上,則點(diǎn)P的坐標(biāo)為P ;
(2)若Q(5,8),且PQ∥y軸,則點(diǎn)P的坐標(biāo)為P ;
(3)若點(diǎn)P在第二象限,且它到x軸、y軸的距離相等,求a2018+2018的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫(xiě)出圖中∠AOC的對(duì)頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D、E、F分別在三邊上,E是AC的中點(diǎn),AD、BE、CF交于一點(diǎn)G,BD=2DC,S△GEC=3,S△GDC=4,則△ABC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)是線段的中點(diǎn),過(guò)點(diǎn)作的垂線,在射線上有一個(gè)動(dòng)點(diǎn)(點(diǎn)不與端點(diǎn)重合),連接,過(guò)點(diǎn)作的垂線,垂足為點(diǎn),在射線上取點(diǎn),使得,已知
(1)當(dāng)時(shí),求的度數(shù);
(2)過(guò)點(diǎn)作垂直于直線交于點(diǎn),在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的大小隨點(diǎn)的運(yùn)動(dòng)而變化,在這個(gè)變化過(guò)程中線段的長(zhǎng)度是否發(fā)生變化?若不變,求出的長(zhǎng);若變化,請(qǐng)說(shuō)明理由;
(3)如圖2,當(dāng)時(shí),設(shè)直線與直線相交于點(diǎn),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的中線,△ABD的周長(zhǎng)比△BCD的周長(zhǎng)多2 cm.若△ABC的周長(zhǎng)為18 cm,且AC=4 cm,求AB和BC的長(zhǎng)..
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn),以O為圓心,OA為半徑作,交y軸于點(diǎn)C,直線l:經(jīng)過(guò)點(diǎn)C.
設(shè)直線l與的另一個(gè)交點(diǎn)為如圖,求弦CD的長(zhǎng);
將直線l向上平移2個(gè)單位,得直線m,如圖2,求證:直線m與相切;
在的前提下,設(shè)直線m與切于點(diǎn)P,Q為上一動(dòng)點(diǎn),過(guò)點(diǎn)P作,交直線QA于點(diǎn)如圖,則的最大面積為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com