【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段,點均在小正方形的頂點上.
(1)在方格紙中畫出以為斜邊的直角三角形,點E在小正方形的頂點上,且的面積為5;
(2)在方格紙中畫出以為一邊的,點在小正方形的頂點上,的面積為4,射線與射線交于點,且,連接,請直接寫出線段的長.
【答案】(1)見解析;(2)作圖見解析,EF= .
【解析】
(1)直接利用直角三角形的性質(zhì)結合勾股定理得出符合題意的圖形;
(2)根據(jù)題意利用等腰直角三角形的性質(zhì)結合勾股定理得出符合題意的圖形.
解:(1)根據(jù)題意可知:AB=,因為、、 恰好構成以AB為斜邊的直角三角形,且面積= ,由此畫出圖形,如圖所示:△ABE即為所求;
(2)根據(jù)題意可知:CD= ,以CD為底,高為 的三角形面積為4,由此畫出△CDF,觀察可得BE∥CF,∵∠ABE=45°,∴延長AB、CF交于點N,∠CNA=∠ABE=45°,
如圖所示:點N,F即為所求,EF=.
故答案為:(1)見解析;(2)作圖見解析,EF= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=2x+b分別交x,y軸于點A、C,拋物線y=ax2+x+4經(jīng)過A、C兩點,交x軸于另外一點B.
(1)求拋物線的解析式;
(2)點P在第一象限內(nèi)拋物線上,連接PB、PC,作平行四邊形PBDC,DE⊥y軸于點E,設點P 的橫坐標為t,線段DE的長度為d,求d與t之間的函數(shù)關系式.
(3)在(2)的條件下,延長BD交直線AC與點F,連接OF,若∠AFO=∠BFO,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=a(x+1)(x﹣3)與x軸交于A、B兩點,拋物線與x軸圍成的封閉區(qū)域(不包含邊界),僅有4個整數(shù)點時(整數(shù)點就是橫縱坐標均為整數(shù)的點),則a的取值范圍_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若平面直角坐標系內(nèi)的點M滿足橫、縱坐標都為整數(shù),則把點M叫做“整點”.例如:P(1,0)、Q(2,﹣2)都是“整點”.拋物線y=mx2﹣4mx+4m﹣2(m>0)與x軸交于點A、B兩點,若該拋物線在A、B之間的部分與線段AB所圍成的區(qū)域(包括邊界)恰有七個整點,則m的取值范圍是( 。
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓練的成績繪制了如圖所示的折線統(tǒng)計圖.
根據(jù)圖所提供的信息,若要推薦一位成績較穩(wěn)定的選手去參賽,應推薦( )
A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設存在正方形EFGH,它的面積是正方形ABCD的2倍.
因為正方形ABCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=,設EB=x,則BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即點B是EF的中點.
同理,點C,D,A分別是FG,GH,HE的中點.
所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
探究三:巳知邊長為1的正方形ABCD, 一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:巳知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲.乙兩人進行跑步訓練,他們所跑的路程y(米)與時間x(秒)之間的關系如圖所示,則下列說法錯誤的是( )
A. 離終點40米處,乙追上甲B. 甲比乙遲3秒到終點
C. 甲跑步的速度是5米/秒D. 乙跑步的速度是米/秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市某中學積極響應創(chuàng)建全國文明城市活動,舉辦了以“校園文明”為主題的手抄報比賽.所有參賽作品均獲獎,獎項分為一等獎、二等獎、三等獎和優(yōu)秀獎,將獲獎結果繪制成如右兩幅統(tǒng)計圖.請你根據(jù)圖中所給信息解答意)
(1)等獎所占的百分比是________;三等獎的人數(shù)是________人;
(2)據(jù)統(tǒng)計,在獲得一等獎的學生中,男生與女生的人數(shù)比為,學校計劃選派1名男生和1名女生參加市手抄報比賽,請求出所選2位同學恰是1名男生和1名女生的概率;
(3)學校計劃從獲得二等獎的同學中選取一部分人進行集訓使其提升為一等獎,要使獲得一等獎的人數(shù)不少于二等獎人數(shù)的2倍,那么至少選取多少人進行集訓?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com