如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是
A.1B.C.D.2
C

試題分析:在Rt△ABD中,AB=4,AD=3,∴。
由折疊的性質(zhì)可得,△ADG≌△A'DG,∴A'D=AD=3,A'G=AG!
設(shè)AG=x,則A'G=AG=x,BG=
在Rt△A'BG中,,解得x=,即AG=
故選C。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是3,點P是直線BC上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點F,使BF=BP,且點F與點E在BC同側(cè),連接EF,CF.

(1)如圖①,當(dāng)點P在CB延長線上時,求證:四邊形PCFE是平行四邊形;
(2)如圖②,當(dāng)點P在線段BC上時,四邊形PCFE是否還是平行四邊形,說明理由;
(3)在(2)的條件下,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時BP長;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,則BC=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2013年四川綿陽4分)對正方形ABCD進行分割,如圖1,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分化線可以剪出一副“七巧板”,用這些部件可以拼出很多圖案,圖2就是用其中6塊拼出的“飛機”.若△GOM的面積為1,則“飛機”的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=∠2.

(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題的逆命題不正確的是
A.平行四邊形的對角線互相平分B.兩直線平行,內(nèi)錯角相等
C.等腰三角形的兩個底角相等D.對頂角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知四邊形ABCD的兩條對角線AC與BD互相垂直,則下列結(jié)論正確的是
A.當(dāng)AC=BD時,四邊形ABCD是矩形
B.當(dāng)AB=AD,CB=CD時,四邊形ABCD是菱形
C.當(dāng)AB=AD=BC時,四邊形ABCD是菱形
D.當(dāng)AC=BD,AD=AB時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,菱形ABCD中,對角線AC交BD于O,AB=8, E是CD的中點,則OE的長等于       .

查看答案和解析>>

同步練習(xí)冊答案