(2011•寧夏)已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D.
(1)求證:PD是⊙O的切線;
(2)若∠CAB=120°,AB=2,求BC的值.
證明:(1)∵AB=AC,
∴∠C=∠B,
又∵OP=OB,∠OPB=∠B,
∴∠C=∠OPB,
∴OP∥AD;
又∵PD⊥AC于D,
∴∠ADP=90°,
∴∠DPO=90°,
∴PD是⊙O的切線.
解:(2)連接AP,
∵AB是直徑,
∴∠APB=90°;
∵AB=AC=2,∠CAB=120°,
∴∠BAP=60°,
∴BP=
∴BC=2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖(3),在三角板△ABC中,∠ACB = 90℃,∠B = 60℃,BC = 1,三角板繞直角頂點C逆時針旋轉(zhuǎn),當(dāng)點A的對應(yīng)點A′落在AB延長線上時即停止轉(zhuǎn)動,則點A轉(zhuǎn)過的路徑長為                 .

D

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓的半徑等于正△ABC的高,此圓在沿底邊AB滾動,切點為T,圓交AC、BC于M、N,則對于所有可能的圓的位置而言,的度數(shù)(   )

A、保持30°不變,                 B、保持60°不變         
C、從30°到60°變動                                     D、從60°到90°變動

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011•攀枝花)用半徑為9cm,圓心角為120°的扇形紙片圍成一個圓錐,則該圓錐的高為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•雅安)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,過點D作DE⊥AC,垂足為E.
(1)求證:DE是⊙O的切線;
(2)如果BC=8,AB=5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•溫州)已知線段AB=7cm,現(xiàn)以點A為圓心,2cm為半徑畫⊙A;再以點B為圓心,3cm為半徑畫⊙B,則⊙A和⊙B的位置關(guān)系( 。
A.內(nèi)含B.相交
C.外切D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形的邊長為2,分別以正方形的兩個相對頂點為圓心,以正方形的一邊為半徑畫弧,則陰影部分的面積是            。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用半徑為12㎝,圓心角為90°的扇形紙片,圍成一個圓錐的側(cè)面,這個圓錐的底面半徑為(    )
A.1.5㎝B.3㎝C.6㎝D.12㎝

查看答案和解析>>

同步練習(xí)冊答案