【題目】在直角三角形△ABC中,∠C90°,AD平分∠BACBC于點(diǎn)D,BE平分∠ABCAC于點(diǎn)E,ADBE相交于點(diǎn)F,過(guò)點(diǎn)DDGAB,過(guò)點(diǎn)BBGDGDG于點(diǎn)G.下列結(jié)論:①∠AFB135°;②∠BDG2CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正確的是_________.(填序號(hào))

【答案】①②④

【解析】

根據(jù)三角形內(nèi)角和定理以及角平分線的定義即可判斷①;根據(jù)平行線的性質(zhì)和已知條件即可判斷②;由∠ABC的度數(shù)不確定即可判斷③;根據(jù)余角的性質(zhì)和角平分線的定義即可判斷④,進(jìn)而可得結(jié)論.

解:∵AD平分∠BACBC于點(diǎn)D,BE平分∠ABCAC于點(diǎn)E,

∴∠BAFBAC,∠ABFABC,

∵∠C90°,

∴∠ABC+BAC90°,

∴∠BAF+ABF45°,

∴∠AFB135°,故①正確;

DGAB,

∴∠BDG=∠ABC2CBE,故②正確;

∵∠ABC的度數(shù)不確定,

BC平分∠ABG不一定成立,故③錯(cuò)誤;

BE平分∠ABC,

∴∠ABF=∠CBE,

又∵∠C=∠ABG90°,

∴∠BEC+CBE90°,∠ABF+FBG90°,

∴∠BEC=∠FBG,故④正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的解題過(guò)程(在下面的橫線上,填寫(xiě)相應(yīng)的結(jié)論或推理的依據(jù)):

已知:ABC,∠A、∠B、∠C之和為多少?為什么?

解:∠A+B+C=180°

理由:過(guò)CCD//AB,并延長(zhǎng)BCE

CD//________(已作)

∴∠________=ACD(兩直線平行,內(nèi)錯(cuò)角相等)

且∠B=___________________________

而∠DCE+ACD+ACB=_________°

∴∠________+B+ACB=180°__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),DOE的周長(zhǎng)為16,BD=12,則ABCD的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段,動(dòng)點(diǎn)的速度從在線段上運(yùn)動(dòng),到達(dá)點(diǎn)后,停止運(yùn)動(dòng);動(dòng)點(diǎn)的速度從在線段上運(yùn)動(dòng),到達(dá)點(diǎn)后,停止運(yùn)動(dòng).若動(dòng)點(diǎn)同時(shí)出發(fā),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間是(單位:)時(shí),兩個(gè)動(dòng)點(diǎn)之間的距離為S(單位:),則能表示的函數(shù)關(guān)系的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,,上一動(dòng)點(diǎn),,過(guò)于點(diǎn),過(guò),連結(jié).在以下四個(gè)結(jié)論中:①;②;③;④的周長(zhǎng)為12.其中正確的結(jié)論有__________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:
解方程x4﹣7x2+12=0這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:設(shè)x2=y,則x4=y2 , ∴原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當(dāng)y=3時(shí),x2=3,x=± ,當(dāng)y=4時(shí),x2=4,x=±2.∴原方程有四個(gè)根是:x1= ,x2=﹣ ,x3=2,x4=﹣2,以上方法叫換元法,達(dá)到了降次的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想,運(yùn)用上述方法解答下列問(wèn)題.
(1)解方程:(x2+x)2﹣5(x2+x)+4=0;
(2)已知實(shí)數(shù)a,b滿足(a2+b22﹣3(a2+b2)﹣10=0,試求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

對(duì)于任意一個(gè)三位數(shù)正整數(shù)n,如果n的各個(gè)數(shù)位上的數(shù)字互不相同,且都不為零,那么稱(chēng)這個(gè)數(shù)為陌生數(shù),將一個(gè)陌生數(shù)的三個(gè)數(shù)位上的數(shù)字交換順序,可以得到5個(gè)不同的新陌生數(shù),把這6個(gè)陌生數(shù)的和與111的商記為M(n).例如n=123,可以得到132.213.231.312.3215個(gè)新的陌生數(shù),這6個(gè)陌生數(shù)的和為123132213231312321=1332,因?yàn)?/span>,所以M(123)=12.

(1)計(jì)算:M(125)M(361)的值;

(2)設(shè)st都是陌生數(shù),其中42分別是s的十位和個(gè)位上的數(shù)字,25分別是t的百位和個(gè)位上的數(shù)字,且t的十位上的數(shù)字比s的百位上的數(shù)字小2;規(guī)定:.,則k的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD軸,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是四邊形ABCD邊上的一個(gè)動(dòng)點(diǎn).

1)若四邊形ABCD是菱形,求點(diǎn)的坐標(biāo).

2)如圖1,若,點(diǎn)在第四象限內(nèi)

①若點(diǎn)在邊,上,點(diǎn)關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)落在直線上,求點(diǎn)的坐標(biāo).

②若點(diǎn)在邊,,上,點(diǎn)軸的交點(diǎn),如圖2,過(guò)點(diǎn)軸的平行線,過(guò)點(diǎn)軸的平行線,它們相交于點(diǎn),將沿直線翻折,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)的坐標(biāo).(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,都是等邊三角形

1)求證:四邊形是菱形

2)給方向?qū)?/span>平移到的位置如圖2,此時(shí),四邊形(如圖3)是平行四邊形嗎?

3)若按(2)題的方式繼續(xù)平移,當(dāng)在什么位置時(shí),四邊形是矩形,請(qǐng)畫(huà)出的位置(如圖4),并證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案