(1)①BG=DE,BG⊥DE,
理由是:
延長BG交DE于O,
∵四邊形ABCD、CGFE是正方形,
∴BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,
∵在△BCG和△DCE中
,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BGC=90°,
又∵∠DGO=∠BGC,
∴∠EDC+∠DGO=90°,
∴∠DOG=180°-90°=90°,
∴BG⊥DE,
即BG=DE,BG⊥DE;
②仍成立,
證明:∵四邊形ABCD、CGFE是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG=90°,
∴∠BCD+∠DCG=∠ECG+∠DCG,
即∠BCG=∠DCE,
∵在△BCG和△DCE中
,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
∵∠CBG+∠BGC=90°,
又∵∠DGO=∠BGC,
∴∠EDC+∠DGO=90°,
∴∠DOG=180°-90°=90°,
∴BG⊥DE,
即BG=DE,BG⊥DE;
(2)解:BG=DE不成立,BG⊥DE成立,
理由是:∵四邊形ABCD和四邊形都是矩形,
∴AB=CD=a,BC=b,CE=ka,CG=kb,
∴
=
=
,
∵∠BCG=∠DCE(已證),
∴△BCG∽△DCE,
∴
=
=
,∠CBG=∠CDE,
∵∠CBG+∠BHC=90°,
又∵∠DHO=∠BHC,
∴∠EDC+∠DHO=90°,
∴∠DOH=180°-90°=90°,
∴BG⊥DE,
則BG=DE不成立,BG⊥DE成立.
分析:(1)①延長BG交DE于O,根據(jù)正方形性質(zhì)推出BC=CD=AB,CG=CE,∠BCD=∠ECD=90°,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;②求出∠BCG=∠DCE,證△BCG≌△DCE,推出BG=DE,∠CBG=∠CDE,求出∠CDE+∠DGO=90°,求出∠DOG=90°即可;
(2)求出
=
=
,加上∠BCG=∠DCE,證△BCG∽△DCE,得出
=
=
,∠CBG=∠CDE,即可判定BG=DE不成立;推出∠EDC+∠DHO=90°,求出∠DOH=90°即可.
點評:本題考查的知識點是正方形性質(zhì),矩形的性質(zhì),全等三角形性質(zhì)和判定,相似三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,主要考查學(xué)生運用定理進行推理的能力,題目比較典型,綜合性比較強.