【題目】如圖,在等邊中,點(diǎn)上一點(diǎn),,

1)求證:

2)延長,連接,若,猜想線段的數(shù)量關(guān)系,并證明你的猜想.

【答案】1)見解析;(2,證明見解析

【解析】

1)由題意利用等邊三角形的性質(zhì)以及全等三角形的判定進(jìn)行分析求證即可;

2)根據(jù)題意利用垂直平分線定理以及全等三角形性質(zhì)求得△ABF是含30°角的直角三角形即可分析求證.

解:(1)∵△ABC是等邊三角形 ,

BC=AC,∠BCD=60°,

,

在△BCD和△ACE中,

∴△BCD≌△ACESAS.

2BF=2AF,

理由:∵AF=CF,AB=BC,

BFAC且平分AC(垂直平分線定理),

BD為等邊△ABCAC邊上的高,

BD平分∠ABC,

∴∠ABD=DBC=30°,

∵△BCD≌△ACE,

∴∠DBC=CAE,

∴∠ABD=CAE=30°,

∴∠BAF=BAC+CAE=90°,

∴在RtABF中,BF=2AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O△ABC的三邊AB、BC、AC分別相切于點(diǎn)D、E、F,如果BC邊的長為10cm,AD的長為4cm,那么△ABC的周長為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線l過正方形ABCD的頂點(diǎn)B,點(diǎn)A、C到直線l的距離分別是AE=1,CF=2,則EF長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠A=140°D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點(diǎn)E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對于一個圖形,通過2種不同的方法計(jì)算它的面積時,可以得到一個數(shù)學(xué)等式.例如圖①可以得到,請解答下列問題:

1)寫出圖②中所表示的等式: ;

2)利用(1)中所得到的結(jié)論,解決下面的問題:已知,,求的值;

3)小明同學(xué)用2張邊長為的正方形紙片、3張邊長為的正方形紙片,5張邊長分別為的長方形紙片拼出了一個長方形,那么該長方形較長一邊的長為多少?

4)小明同學(xué)又用張邊長為的正方形紙片,張邊長為的正方形紙片、張邊長分別為的長方形紙片拼出了一個面積為的長方形,請問一共用掉多少張紙片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué):你去過黃山嗎?在黃山的上山路上,有一些斷斷續(xù)續(xù)的臺階,如圖是其中的甲、乙段臺階路的示意圖,圖中的數(shù)字表示每一級臺階的高度(單位:cm).

(1)兩段臺階路有哪些相同點(diǎn)和不同點(diǎn)?

(2)哪段臺階路走起來更舒服,為什么?

(3)為方便游客行走,需要重新整修上山的小路.對于這兩段臺階路,在臺階數(shù)不變的情況下,請你提出合理的整修建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是邊上的中線,的中點(diǎn),過點(diǎn)的平行線與的延長線相交于點(diǎn),連接

1)求證:四邊形為平行四邊形;

2)若,請寫出圖中所有與線段相等的線段(線段除外).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:

,,.

其中說法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案