【題目】如圖,己知正方形ABCD的邊長為4, P是對角線BD上一點(diǎn),PE⊥BC于點(diǎn)E, PF⊥CD于點(diǎn)F,連接AP, EF.給出下列結(jié)論:①PD=EC:②四邊形PECF的周長為8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值為;⑥AP⊥EF.其中正確結(jié)論的序號為( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊矩形ABCD,使點(diǎn)D落在BC邊上的點(diǎn)F處.
(1)求證:△ABF∽△FCE;
(2)若DC=8,CF=4,求矩形ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知圓錐底面半徑r=10cm,母線長為40cm.
(1)求它的側(cè)面展開圖的圓心角和表面積.
(2)若一只甲蟲從A點(diǎn)出發(fā)沿著圓錐側(cè)面行到母線SA的中點(diǎn)B,請你動腦筋想一想它所走的最短路線是多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線:與軸交于點(diǎn)A.
(1)A點(diǎn)的坐標(biāo)為 .
(2)直線和:交于點(diǎn)B,若以O、A、B、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)C的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=x+m與y=在第一象限交于點(diǎn)A,且與x軸交于點(diǎn)C,AB⊥x軸,垂足為B,且S△AOB=1.
(1)求m的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M=3a2-2ab+b2 , N=2a2+ab-3b2
(1)化簡2M-3N;
(2)若2(7a-1)2+3|b+1|=0,求2M-3N的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)和點(diǎn)處各折一下,得到一條“折線數(shù)軸”,圖中點(diǎn)表示-12,點(diǎn)表示10,點(diǎn)表示20,我們稱點(diǎn)和點(diǎn)在數(shù)軸上相距32個長度單位.動點(diǎn)從點(diǎn)出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)運(yùn)動到點(diǎn)期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點(diǎn)從點(diǎn)出發(fā),以1單位/秒的速度沿著折線數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)運(yùn)動到點(diǎn)期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動的時間為秒.則:
(1)動點(diǎn)從點(diǎn)運(yùn)動至點(diǎn)需要時間多少秒?
(2)若,兩點(diǎn)在點(diǎn)處相遇,則點(diǎn)在折線數(shù)軸上所表示的數(shù)是多少?
(3)求當(dāng)為何值時,、兩點(diǎn)在數(shù)軸上相距的長度與、兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求這個四邊形的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,E、F是AC上的兩點(diǎn),當(dāng)E、F滿足下列哪個條件時,四邊形DEBF不一定是平行四邊形( 。
A.∠ADE=∠CBFB.∠ABE=∠CDFC.DE=BFD.OE=OF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com