【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿坡角為30°的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,計(jì)算結(jié)果保留根號(hào))
【答案】AB=.
【解析】
過點(diǎn)E作EG⊥AB于點(diǎn)G,延長ED交BC延長線于點(diǎn)F,則∠CFD=90°,在Rt△CDF中求得DF=2, CF=,可得GE=BF=,GB=EF=3.5,再求出AG=GEtan∠AEG=,可得答案.
解:如圖,過點(diǎn)E作EG⊥AB于點(diǎn)G,延長ED交BC延長線于點(diǎn)F,則∠CFD=90°,
∵∠DCF=30°,
∵CD=4,∴DF=2, CF==,
∴BF=BC+CF=,
則GE=BF=,
GB=EF=ED+DF=1.5+2=3.5,
又∵∠AEG=37°,
∴AG=GEtan∠AEG=tan37°=,
則AB=AG+BG=,
故旗桿AB的高度為()米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了“防溺水”知識(shí)競賽,八年級(jí)兩個(gè)班選派10名同學(xué)參加預(yù)賽,依據(jù)各參賽選手的成績(均為整數(shù))繪制了統(tǒng)計(jì)表和折線統(tǒng)計(jì)圖(如圖所示).
(1)統(tǒng)計(jì)表中,a=________, b =________;
(2)若從兩個(gè)班的預(yù)賽選手中選四名學(xué)生參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額 在成績?yōu)?/span>98分的學(xué)生中任選兩個(gè),求另外兩個(gè)決賽名額落在不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E |
出行方式 | 共享單車 | 步行 | 公交車 | 的士 | 私家車 |
根據(jù)以上信息,回答下列問題:
(1)參與本次問卷調(diào)查的市民共有 人,其中選擇B類的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時(shí),y隨x的增大而減;③無論a取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn).其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把1,1,2,3,5,8,13,21,…,這組數(shù)稱為斐波那契數(shù)列,為了進(jìn)一步研究,依次以這列數(shù)為半徑作90°圓弧 ,,,…,得到斐波那契螺旋線,然后順次連結(jié)P1P2,P2P3,P3P4,…,得到螺旋折線(如圖),已知點(diǎn)P1(0,1),P2(-1,0),P3(0,-1),則該折線上的點(diǎn)P9的坐標(biāo)為( )
A. (-6,24)B. (-6,25)C. (-5,24)D. (-5,25)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AB=4,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接CE,則CE等于( 。
A. 5B. 6C. 2+2D. 2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長;
(3)取點(diǎn)G(0,-1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO-∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對(duì)岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角是45°,沿斜坡走米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為30°,且斜坡AF的坡比為1︰2.則小明從點(diǎn)A走到點(diǎn)D的過程中,他上升的高度為____米;大樹BC的高度為____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖,軸與拋物線相交于點(diǎn),點(diǎn)是直線下方拋物線上的動(dòng)點(diǎn),過點(diǎn)且與軸平行的直線與,分別交于點(diǎn)試探究當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),線段的最長,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)為拋物線的頂點(diǎn),點(diǎn)是該拋物線上的一點(diǎn),在軸、軸上分別找點(diǎn),使四邊形的周長最小,請(qǐng)求出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com