【題目】如圖,在△ABC中,∠ABC=45°F是高ADBE的交點,CD=4,則線段DF的長為(

A.4B.5C.6D.8

【答案】A

【解析】

求出利用等腰三角形性質(zhì)得到,AD=BD,根據(jù)∠FBD+C=90°,∠CAD+C=90°,推出∠FBD=CAD,根據(jù)ASAFBD≌△CAD,推出CD=DF即可.

解:∵ADABC的高,
ADBC,
∴∠ADB=ADC=90°
∵∠ABC=45°,
∴∠BAD=45°=ABD,
AD=BD,
BEAC
∴∠BEC=90°,
∴∠FBD+C=90°,∠CAD+C=90°,
∴∠FBD=CAD
FBDCAD
,
∴△FBD≌△CADASA),
CD=DF=4,
所以選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】義安中學(xué)工會三八婦女節(jié)共籌集會費(fèi)1800元,工會決定拿出不少于270元,但不超過300元的資金為優(yōu)秀女職工購買紀(jì)念品,其余的錢用于給50位女職工每人買一瓶洗發(fā)液或護(hù)發(fā)素,已知每瓶洗發(fā)液比每瓶護(hù)發(fā)素貴9元,用200元恰好可以買到2瓶洗發(fā)液和5瓶護(hù)發(fā)素.

(1)求每瓶洗發(fā)液和每瓶護(hù)發(fā)素價格各是多少元?

(2)有幾種購買洗發(fā)液和護(hù)發(fā)素的方案?哪種方案用于為優(yōu)秀女職工購買紀(jì)念品的資金更充足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)班組織了一次食品安全知識競賽,甲、乙兩隊各5人的成績?nèi)绫硭?/span>(10分制)

數(shù)據(jù)

中位數(shù)

眾數(shù)

方差

8

10

9

6

9

9

1.84

10

8

9

7

8

8

1.04

(1)補(bǔ)全表格中的眾數(shù)和中位數(shù)

(2)并判斷哪隊的成績更穩(wěn)定?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;

(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);

(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請在圖上畫出這條對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形ABC的邊長為7,點DAB上一點,點EBC的延長線上,且CE=AD,連接DEAC于點F,作DHAC于點H,則線段HF的長為 ____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,點、分別在軸和軸上,軸,.點出發(fā),以1cm/s的速度沿邊勻速運(yùn)動,點從點出發(fā),沿線段勻速運(yùn)動.點與點同時出發(fā),其中一點到達(dá)終點,另一點也隨之停止運(yùn)動.設(shè)點運(yùn)動的時間為(s),的面積為(cm2),己知之間的函數(shù)關(guān)系如圖②中的曲線段、線段與曲線段.

(1)的運(yùn)動速度為 cm/s,點的坐標(biāo)為 ;

(2)求曲線段的函數(shù)解析式;

(3)當(dāng)為何值時,的面積是四邊形的面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,∠ACB90°,CACB4,另有一塊等腰直角三角板的直角頂點放在C處,CPCQ2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接APBP、BQ

1)如圖1求證:APBQ;

2)如圖2當(dāng)三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;

3)設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EPEQ、EC之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊三角形ABC,點D是邊AC上任意一點,延長BCE,使CEAD

1)如圖1,點DAC中點,求證:DBDE

2)如圖2,點D不是AC中點,求證:DBDE;

3)如圖3,點D不是AC中點,點FBD的中點,連接AE,AF,求證:AE2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點,在拋物線上,且在該拋物線對稱軸的同側(cè)(點在點的左側(cè)),過點、分別作軸的垂線,分別交軸于點、,交直線于點、.設(shè)為四邊形的面積.則下列關(guān)系正確的是( )

A. S=y2+y1 B. S=y2+2y1 C. S=y2-y1 D. S=y2-2y1

查看答案和解析>>

同步練習(xí)冊答案