【題目】小明解方程出現了錯誤,解答過程如下:
方程兩邊都乘以,得(第一步)
去括號,得(第二步)
移項,合并同類項,得(第三步)
解得(第四步)
原方程的解為(第五步)
(1)小明解答過程是從第_____步開始出錯的,這一步正確的解答結果_____,此步的根據是_____.
(2)小明的解答過程缺少_____步驟,此方程的解為_____.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,將△ABC繞著點A旋轉后,點B、C的對應點分別記為B1、C1,如果點B1落在射線BD上,那么CC1的長度為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坡頂處的同一水平面上有一座紀念碑垂直于水平,小明在斜坡底處測得該紀念碑頂部的仰角為,然后他沿著坡比的斜坡攀行了39米到達坡頂,在坡頂處又測得該紀念碑頂部的仰角為.求紀念碑的高度.(結果精確到1米,參考數據:,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:若拋物線的頂點和與x軸的兩個交點所組成的三角形為等邊三角形時.則稱此拋物線為正拋物線.
概念理解:
(1)如圖,在△ABC中,∠BAC=90°,點D是BC的中點.試證明:以點A為頂點,且與x軸交于D、C兩點的拋物線是正拋物線;
問題探究:
(2)已知一條拋物線經過x軸的兩點E、F(E在F的左邊),E(1,0)且EF=2若此條拋物線為正拋物線,求這條拋物線的解析式;
應用拓展:
(3)將拋物線y1=﹣x2+2x+9向下平移9個單位后得新的拋物線y2.拋物線y2的頂點為P,與x軸的兩個交點分別為M、N(M在N左側),把△PMN沿x軸正半軸無滑動翻滾,當邊PN與x軸重合時記為第1次翻滾,當邊PM與x軸重合時記為第2次翻滾,依此類推…,請求出當第2019次翻滾后拋物線y2的頂點P的對應點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數統(tǒng)計圖:
(1)該校參加航模比賽的總人數是 人,空模所在扇形的圓心角的度數是 ;
(2)并把條形統(tǒng)計圖補充完整;
(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數共有2500人,請你估算今年參加航模比賽的獲獎人數約是多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規(guī)定拋物線與軸有兩個不同的交點,時,線段稱為該拋物線的“橫截弦”,其長度記為.
(1)已知拋物線,則 ;
(2)已知拋物線經過點,當時,求該拋物線所對應的函數解析式;
(3)已知拋物線經過點,與軸交于點.
①拋物線恒存在“橫截弦”,求的取值范圍;
②求關于的函數解析式;
③連接,,的面積為.當時,請直接寫出取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,于點D.
(1)如圖1,當時,若CE平分,交AB于點E,交BD于點F.
①求證:是等腰三角形;
②求證:;
(2)點E在AB邊上,連接CE.若,在圖2中補全圖形,判斷與之間的數量關系,寫出你的結論,并寫出求解與關系的思路.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,M、N分別是正方形ABCD的邊BC、CD上的點,已知:∠MAN=30°,AM=AN,△AMN的面積為1.
(1)求∠BAM的度數;
(2)求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是課本中“作一個角等于已知角”的尺規(guī)作圖過程.
已知:∠AOB.
求作:一個角,使它等于∠AOB.
作法:如圖
(1)作射線O'A';
(2)以O為圓心,任意長為半徑作弧,交OA于C,交OB于D;
(3)以O'為圓心,OC為半徑作弧C'E',交O'A'于C';
(4)以C'為圓心,CD為半徑作弧,交弧C'E'于D';
(5)過點D'作射線O'B'.
則∠A'O'B'就是所求作的角.
請回答:該作圖的依據是_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com