【題目】如圖1,已知A(,0),B(0, )分別為兩坐標軸上的點,且、滿足,OC∶OA=1∶3.
(1)求A、B、C三點的坐標;
(2)若D(1,0),過點D的直線分別交AB、BC于E、F兩點,設(shè)E、F兩點的橫坐標分別為.當BD平分△BEF的面積時,求的值;
(3)如圖2,若M(2,4),點P是軸上A點右側(cè)一動點,AH⊥PM于點H,在HM上取點G,使HG=HA,連接CG,當點P在點A右側(cè)運動時,∠CGM的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.
【答案】(1)A(6,0),B(0,6),C(-2,0);(2);(3)不改變.
【解析】試題分析:(1)由偶次方和算術(shù)平方根的非負性質(zhì)求出a和b的值,得出點A、B的坐標,再求出OC,即可得出點C的坐標;
(2)作EG⊥x軸于G,FH⊥x軸于H,由三角形的面積關(guān)系得出DF=DE,由AAS證明△FDH≌△EDG,得出DH=DG,即可得出結(jié)果;
(3)作MQ⊥x軸于Q,連接CM、AG、M,證出△MCQ是等腰直角三角形,得出∠MCQ=45°,同理:△MPQ是等腰直角三角形,∠MAQ=45°,△AHG是等腰直角三角形,得出∠AGH=45°=∠MCQ,證出A、G、M、C四點共圓,由圓周角定理即可得出結(jié)論.
試題解析:(1)∵,
∴a-b=0,b-6=0,
∴a=b=6,
∴A(6,0),B(0,6),
∴OA==OB=6,
∵OC:OA=1:3,
∴OC=2,
∴C(-2,0).
(2)作EG⊥x軸于G,FH⊥x軸于H,如圖1所示:
則∠FHD=∠EGD=90°,
∵BD平分△BEF的面積,
∴DF=DE,
在△FDH和△EDG中, ,
∴△FDH≌△EDG(AAS),
∴DH=DG,即xE+1=xF1,
∴xE+xF=2;
(3)∠CGM的度數(shù)不改變,∠CGM=45°;
理由如下:作MQ⊥x軸于Q,連接CM、AG、M,如圖2所示:
則MQ=4,OQ=2,
∴CQ=2+2=4,
∴△MCQ是等腰直角三角形,
∴∠MCQ=45°,
同理:△MQA是等腰直角三角形,
∴∠MAQ=45°,
∵AH⊥PM,HG=HA,
∴△AHG是等腰直角三角形,
∴∠AGH=45°=∠MCQ,
∴A、G、M、C四點共圓,
∴∠CGM=∠MAQ=45°.
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,是真命題的是( 。
A.無理數(shù)是開方開不盡的數(shù)
B.y 軸上的點,縱坐標為 0
C.鄰補角一定互補
D.有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,解答問題
數(shù)學課上,同學們興致勃勃地探討著利用不同畫圖工具畫角的平分線的方法.
小惠說:“如圖1,我用相同的兩塊含 30°角的直角三角板可以畫角的平分線.畫法如下:
①在 的兩邊分別取點 M,N,使 OM=ON ;
②把直角三角板按如圖所示的位置放置,兩斜邊交于點 P ;
③作射線 OP .則OP是∠AOB 的平分線.”小旭說:“我只用刻度尺就可以畫角平分線.”
請你也參與探討,解決以下問題:
(1)小惠的作法正確嗎?若正確,請給出證明,若不正確,請說明理由.
(2)請你和小旭一樣,只用刻度尺畫出圖 2 中∠QRS 的平分線,并簡述畫圖的過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列計算正確的是( 。
A.a2a3=a6B.(ab3)2=a2b6
C.(a+2b)(a﹣2b)=a2﹣2b2D.a(ab﹣1)=a2b﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“2017年張學友演唱會”于6月3日在我市關(guān)山湖奧體中心舉辦,小張去離家2520米的奧體中心看演唱會,到奧體中心后,發(fā)現(xiàn)演唱會門票忘帶了,此時離演唱會開始還有23分鐘,于是他跑步回家,拿到票后立刻找到一輛“共享單車”原路趕回奧體中心,已知小張騎車的時間比跑步的時間少用了4分鐘,且騎車的平均速度是跑步的平均速度的1.5倍.
(1)求小張跑步的平均速度;
(2)如果小張在家取票和尋找“共享單車”共用了5分鐘,他能否在演唱會開始前趕到奧體中心?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com