【題目】等腰△ABC中,AB=AC=5,△ABC的面積為10,則BC=

【答案】2 或4
【解析】解:作CD⊥AB于D,
則∠ADC=∠BDC=90°,△ABC的面積= ABCD= ×5×CD=10,
解得:CD=4,
∴AD= = =3;
分兩種情況:

①等腰△ABC為銳角三角形時(shí),如圖1所示:
BD=AB﹣AD=2,
∴BC= = =2
②等腰△ABC為鈍角三角形時(shí),如圖2所示:
BD=AB+AD=8,
∴BD= = =4 ;
綜上所述:BC的長(zhǎng)為2 或4 ;
故答案為:2 或4
作CD⊥AB于D,則∠ADC=∠BDC=90°,由三角形的面積求出CD,由勾股定理求出AD;分兩種情況:①等腰△ABC為銳角三角形時(shí),求出BD,由勾股定理求出BC即可;②等腰△ABC為鈍角三角形時(shí),求出BD,由勾股定理求出BC即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱(chēng)軸為x=1.

(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E,F分別是等邊△ABC中AC,AB邊上的中點(diǎn),以AE為邊向外作等邊△ADE.

(1)求證:四邊形AFED是菱形;
(2)連接DC,若BC=10,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.

(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程 ,且關(guān)于x的不等式組 只有4個(gè)整數(shù)解,那么b的取值范圍是(
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種服裝,每件甲種服裝比每件乙種服裝貴25元,該商場(chǎng)用2000元購(gòu)進(jìn)甲種服裝,用750元購(gòu)進(jìn)乙種服裝,所購(gòu)進(jìn)的甲種服裝的件數(shù)是所購(gòu)進(jìn)的乙種服裝的件數(shù)的2倍.
(1)分別求每件甲種服裝和每件乙種服裝的進(jìn)價(jià);
(2)若每件甲種服裝售價(jià)130元,將購(gòu)進(jìn)的兩種服裝全部售出后,使得所獲利潤(rùn)不少于750元,問(wèn)每件乙種服裝售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在信息快速發(fā)展的社會(huì),“信息消費(fèi)”已成為人們生活的重要組成部分.某高校組織課外小組在鄭州市的一個(gè)社區(qū)隨機(jī)抽取部分家庭,調(diào)查每月用于信息消費(fèi)的金額,根據(jù)數(shù)據(jù)整理成如圖所示的不完整統(tǒng)計(jì)表和統(tǒng)計(jì)圖.已知A,B兩組戶數(shù)頻數(shù)直方圖的高度比為1:5.
月信息消費(fèi)額分組統(tǒng)計(jì)表

組別

消費(fèi)額(元)

A

10≤x<100

B

100≤x<200

C

20≤x<300

D

300≤x<400

E

x≥400

請(qǐng)結(jié)合圖表中相關(guān)數(shù)據(jù)解答下列問(wèn)題:

(1)這次接受調(diào)查的有戶;
(2)在扇形統(tǒng)計(jì)圖中,“E”所對(duì)應(yīng)的圓心角的度數(shù)是;
(3)請(qǐng)你補(bǔ)全頻數(shù)直方圖;
(4)若該社區(qū)有2000戶住戶,請(qǐng)估計(jì)月信息消費(fèi)額不少于200元的戶數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將矩形ABCD沿DE折疊,使頂點(diǎn)A落在DC上的點(diǎn)A′處,然后將矩形展平,沿EF折疊,使頂點(diǎn)A落在折痕DE上的點(diǎn)G處.再將矩形ABCD沿CE折疊,此時(shí)頂點(diǎn)B恰好落在DE上的點(diǎn)H處.如圖2.
(1)求證:EG=CH;
(2)已知AF= ,求AD和AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)為了解七年級(jí)學(xué)生開(kāi)展跳繩活動(dòng)的情況,隨機(jī)調(diào)查了該區(qū)部分學(xué)校七年級(jí)學(xué)生1分鐘跳繩的次數(shù),將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),下面是根據(jù)調(diào)查數(shù)據(jù)制作的統(tǒng)計(jì)圖表的一部分.

分組

次數(shù)x(個(gè))

人數(shù)

A

0≤x<120

24

B

120≤x<130

72

C

130≤x<140

D

x≥140

根據(jù)以上信息,解答下列問(wèn)題:
(1)在被調(diào)查的學(xué)生中,跳繩次數(shù)在120≤x<130范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在0≤x<120范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(2)本次共調(diào)查了名學(xué)生,其中跳繩次數(shù)在130≤x<140范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在x≥140范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(3)該區(qū)七年級(jí)共有4000名學(xué)生,估計(jì)該區(qū)七年級(jí)學(xué)生1分鐘跳繩的次數(shù)不少于130個(gè)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案