【題目】如圖,∠AOB90°,且OA,OB分別與反比例函數(shù)yx0)、y=﹣x0)的圖象交于A,B兩點(diǎn),則sinOAB的值是( 。

A.B.C.D.

【答案】B

【解析】

根據(jù)反比例函數(shù)的幾何意義,可求出△AOM,△BON的面積,由于∠AOB90°,可證出△AOM∽△BON,由相似三角形的面積比等于相似比的平方,進(jìn)而求出相似比,即直角三角形AOB兩條直角邊的比,可求出斜邊,進(jìn)而求sinOAB

過點(diǎn)A、B分別作AMx軸,BNx軸,垂足為MN,

點(diǎn)A在反比例函數(shù)yx0)的圖象上,

SAOM×3

點(diǎn)B在反比例函數(shù)y=﹣x0)的圖象上,

SBON×42,

∵∠AOB90°

∴△BON∽△AOM,

2

,

Rt△AOB中,設(shè)OB2m,則OAm

ABm,

∴sin∠OAB,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時(shí),水面寬AB12m.當(dāng)水面上升6m時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少m?

下面給出了解決這個(gè)問題的兩種方法,請(qǐng)補(bǔ)充完整:

方法一:如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,

此時(shí)點(diǎn)B的坐標(biāo)為(      ),拋物線的頂點(diǎn)坐標(biāo)為(   ,   ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y6時(shí),求出此時(shí)自變量x的取值,即可解決這個(gè)問題.

方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy,

這時(shí)這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y   時(shí),求出此時(shí)自變量x的取值為   ,即可解決這個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)DAB邊上,斜邊DEAC邊于點(diǎn)F,求n的大小和圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2+2x3

1)將二次函數(shù)yx2+2x3化成頂點(diǎn)式.

2)求圖象與x軸,y軸的交點(diǎn)坐標(biāo).

3)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.

4)當(dāng)x取何值時(shí),yx的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,P是邊AD上的一點(diǎn),連接BP,CP過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交AD邊于點(diǎn)M,且使∠ABE=∠CBPAB2,BC5

1)證明:ABM∽△APB;

2)當(dāng)AP3時(shí),求sinEBP的值;

3)如果EBC是以BC為底邊的等腰三角形,求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為cm,在AC,BC邊上各取一點(diǎn)E,F,使得AE=CF,連接AFBE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),則動(dòng)點(diǎn)P經(jīng)過的路徑長(zhǎng)為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,連接ACBD,2BDC+ADB180°

1)如圖1,求證:ACBC;

2)如圖2,E為⊙O上一點(diǎn), ,FAC上一點(diǎn),DEBF相交于點(diǎn)T,連接AT,若∠BFC=∠BDC+ABD,求證:AT平分∠DAB;

3)在(2)的條件下,DTTEAD8,BD12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過點(diǎn)A8,6)分別作x軸、y軸的平行線,交y軸于點(diǎn)B,交x軸于點(diǎn)C,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B→A→C2個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).

1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo):B , )、C , );

2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),用含t的式子表示線段AP的長(zhǎng),并寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案