【題目】如圖,∠AOB=90°,且OA,OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A,B兩點(diǎn),則sin∠OAB的值是( 。
A.B.C.D.
【答案】B
【解析】
根據(jù)反比例函數(shù)的幾何意義,可求出△AOM,△BON的面積,由于∠AOB=90°,可證出△AOM∽△BON,由相似三角形的面積比等于相似比的平方,進(jìn)而求出相似比,即直角三角形AOB兩條直角邊的比,可求出斜邊,進(jìn)而求sin∠OAB
過點(diǎn)A、B分別作AM⊥x軸,BN⊥x軸,垂足為M、N,
∵點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,
∴S△AOM=×3=,
∵點(diǎn)B在反比例函數(shù)y=﹣(x<0)的圖象上,
∴S△BON=×4=2,
∵∠AOB=90°
∴△BON∽△AOM,
∴()2==,
∴=,
在Rt△AOB中,設(shè)OB=2m,則OA=m,
∴AB==m,
∴sin∠OAB===,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時(shí),水面寬AB為12m.當(dāng)水面上升6m時(shí)達(dá)到警戒水位,此時(shí)拱橋內(nèi)的水面寬度是多少m?
下面給出了解決這個(gè)問題的兩種方法,請(qǐng)補(bǔ)充完整:
方法一:如圖1,以點(diǎn)A為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,
此時(shí)點(diǎn)B的坐標(biāo)為( , ),拋物線的頂點(diǎn)坐標(biāo)為( , ),
可求這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y=6時(shí),求出此時(shí)自變量x的取值,即可解決這個(gè)問題.
方法二:如圖2,以拋物線頂點(diǎn)為原點(diǎn),對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy,
這時(shí)這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y= 時(shí),求出此時(shí)自變量x的取值為 ,即可解決這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)D在AB邊上,斜邊DE交AC邊于點(diǎn)F,求n的大小和圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)和是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;
(3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣3.
(1)將二次函數(shù)y=x2+2x﹣3化成頂點(diǎn)式.
(2)求圖象與x軸,y軸的交點(diǎn)坐標(biāo).
(3)在坐標(biāo)系中利用描點(diǎn)法畫出此拋物線.
(4)當(dāng)x取何值時(shí),y隨x的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P是邊AD上的一點(diǎn),連接BP,CP過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交AD邊于點(diǎn)M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)證明:△ABM∽△APB;
(2)當(dāng)AP=3時(shí),求sin∠EBP的值;
(3)如果△EBC是以BC為底邊的等腰三角形,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為cm,在AC,BC邊上各取一點(diǎn)E,F,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),則動(dòng)點(diǎn)P經(jīng)過的路徑長(zhǎng)為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,連接AC、BD,2∠BDC+∠ADB=180°.
(1)如圖1,求證:AC=BC;
(2)如圖2,E為⊙O上一點(diǎn), =,F為AC上一點(diǎn),DE與BF相交于點(diǎn)T,連接AT,若∠BFC=∠BDC+∠ABD,求證:AT平分∠DAB;
(3)在(2)的條件下,DT=TE,AD=8,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),過點(diǎn)A(8,6)分別作x軸、y軸的平行線,交y軸于點(diǎn)B,交x軸于點(diǎn)C,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿B→A→C以2個(gè)單位長(zhǎng)度/秒的速度向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒).
(1)直接寫出點(diǎn)B和點(diǎn)C的坐標(biāo):B( , )、C( , );
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),用含t的式子表示線段AP的長(zhǎng),并寫出t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com