【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設小正方形的邊長為x厘米.

(1)當矩形紙板ABCD的一邊長為90厘米時,求紙盒的側面積的最大值;

(2)當EHEF=7:2,且側面積與底面積之比為9:7時,求x的值.

【答案】(1);(2)10.

【解析】試題分析:(1)當a=90時,b=40,求出側面積,利用配方法求紙盒側面積的最大值;

(2)根據(jù)題意列方程求解即可.

試題解析:

1S2[x(902x)x(402x)] =-8x2260x

=-8(x)2

80,∴當x時,S最大=

2)設EF2m,則EH7m,

則側面積為2(7mx2mx)18mx,底面積為7m·2m14m,

由題意,得18mx14m97,mx

AD7x2x9x,AB2x2x4x

4x·9x3600,且x0,

x10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、F分別在矩形ABCD的邊BC、AD上,把這個矩形沿EF折疊后,點D恰好落在BC邊上的G點處,且∠AFG=60°

1)求證:GE=2EC;

2)連接CH、DG,試證明:CHDG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點,過點O的直線分別與AB、CD交于點EF,連結BFAC于點M,連結DE、BO.若∠COB=60°FO=FC,則下列結論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOESBCM=23.其中正確結論的個數(shù)是( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1(﹣22(﹣3)﹣|6|

2)( ×(﹣12

3)(4x+2y-3(x-2y)

44ab2-3a2b-2(a2b-2ab2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司開發(fā)生產(chǎn)960件新產(chǎn)品,需要加工后才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨完成這批產(chǎn)品比乙工廠單獨完成這批產(chǎn)品多用20天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.5倍,公司需付甲工廠加工費每天80元,乙工廠每天加工費用120元。

1)求甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?

2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家同時合作完成。在加工過程中,公司派一名工程師每天來廠進行技術指導,并負擔每天5元的午餐補助費,請你幫助公司選擇一種既省時又省力的方案,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠車間為了了解工人日均生產(chǎn)能力的情況,隨機抽取10名工人進行測試,將獲得數(shù)據(jù)制成如下統(tǒng)計圖.

1)求這10名工人的日均生產(chǎn)件數(shù)的平均數(shù)、眾數(shù)、中位數(shù);

2)若日均生產(chǎn)件數(shù)不低于12件為優(yōu)秀等級,該工廠車間共有工人120人,估計日均生產(chǎn)能力為“優(yōu)秀”等級的工人約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,分別以ABAC為斜邊,向△ABC的內(nèi)側作等腰Rt△ABERt△ACD,點MBC的中點,連接MD、ME.

1)若AB8,AC4,求DE的長;

2)求證:ABAC2DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(a),將兩塊直角三角尺的直角頂點C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   ;并猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;

2)如圖(b),若是兩個同樣的三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小有何關系,請說明理由;

3)已知∠AOBα,∠CODβ(都是銳角),如圖(c),若把它們的頂點O重合在一起,請直接寫出∠AOD與∠BOC的大小相等的關系(用含有α,β的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

同步練習冊答案