【題目】如圖,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長,分別交對角線BD于點(diǎn)F,交BC邊延長線于點(diǎn)E.若FG=2,則AE的長度為( )
A. 6B. 8
C. 10D. 12
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點(diǎn)E是點(diǎn)D關(guān)于AB的對稱點(diǎn),M是AB上的一動點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(-1,0).下列結(jié)論:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤當(dāng)x>-1時,y>0.其中正確結(jié)論的個數(shù)是( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明過程:
如圖所示,直線AD與AB,CD分別相交于點(diǎn)A,D,與EC,BF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C.
求證:∠A=∠D.
證明:∵∠1=∠2,(已知)∠2=∠AGB( )
∴∠1= ( )
∴EC∥BF( )
∴∠B=∠AEC( )
又∵∠B=∠C(已知)
∴∠AEC= ( )
∴ ( )
∴∠A=∠D( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(0,8),點(diǎn)B(m,0),且m>0.把△AOB繞點(diǎn)A逆時針旋轉(zhuǎn)90°,得△ACD,點(diǎn)O,B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為C,D,
(1)點(diǎn)C的坐標(biāo)為 ;
(2)①設(shè)△BCD的面積為S,用含m的式子表示S,并寫出m的取值范圍;
②當(dāng)S=6時,求點(diǎn)B的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題:
若整數(shù)能被4整除,則稱整數(shù)為“完美數(shù)”.例如:8能被4整除,所以8是“完美數(shù)”;一4是4的倍數(shù),所以一4也是“完美數(shù)”。
(1)10到15之間的“完美數(shù)”是_______;
若,是整數(shù),則 ________ “完美數(shù)”(填:“是”或“不是”);
(2)若任意四個連續(xù)的“完美數(shù)”中最小數(shù)的是4(是整數(shù)),則它與四個數(shù)中最大數(shù)的積是32的倍數(shù)嗎?請說明理由;
(3)當(dāng)是正整數(shù)時,試說明:一定是“完美數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與軸、軸分別交于點(diǎn),與函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)為2.在軸上有一點(diǎn)(其中),過點(diǎn)作軸的垂線,分別交函數(shù)和的圖象于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若四邊形是平行四邊形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)H是BC的中點(diǎn),作射線AH,在線段AH及其延長線上分別取點(diǎn)E,F(xiàn),連結(jié)BE,CF.
(1)請你添加一個條件,使得△BEH≌△CFH,你添加的條件是,并證明.
(2)在問題(1)中,當(dāng)BH與EH滿足什么關(guān)系時,四邊形BFCE是矩形,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com