精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△AOB,△COD是等腰直角三角形,點DAB上.

1)求證:△ACO≌△BDO

2)若∠BOD30°,求∠ACD度數.

【答案】1)證明見解析;(2)∠ACD60°.

【解析】

1)根據等腰直角三角形得出OC=OD,OA=OB,∠AOB=COD=90°,求出∠AOC=BOD,根據全等三角形的判定定理推出即可;

2)根據全等三角形的性質求出∠BOD=∠ACO30°,∠CAO=∠OBD45°,然后利用三角形內角和求出∠ACO,進而求解

解:(1)∵△AOB,△COD是等腰直角三角形,

OCODAOBO、∠COA+AOD=∠DOB+AOD90°,

∴∠COA=∠DOB,

∴△ACO≌△BDO SAS),

2)解:∵△ACO≌△BDO,

∴∠BOD=∠ACO30°,∠CAO=∠OBD45°,

∴∠ACO180°﹣30°﹣45°=105°,

∴∠ACDACO﹣∠OCD105°﹣45°=60°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)在圖中的點上標出相應字母A、B、C,并求出ABC的面積;

2)在圖中作出ABC關于y軸的對稱圖形A1B1C1

3)寫出點A1,B1,C1的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,實線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長相同,求圖中∠MON的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以點O為支點的杠桿,在A端用豎直向上的拉力將重為G的物體勻速拉起,當杠桿OA水平時,拉力為F;當杠桿被拉至OA1時,拉力為F1,過點B1B1C⊥OA,過點A1A1D⊥OA,垂足分別為點CD①△OB1C∽△OA1D; ②OAOC=OBOD;③OCG=ODF1④F=F1

其中正確的說法有( )

A1B2C3D4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】乘法公式的探究及應用.

數學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

1)請用兩種不同的方法求圖2大正方形的面積.

方法1______;方法2______

2)觀察圖2,請你寫出下列三個代數式:(a+b2,a2+b2,ab之間的等量關系.______

3)類似的,請你用圖1中的三種紙片拼一個圖形驗證:

a+b)(a+2b=a2+3ab+2b2

4)根據(2)題中的等量關系,解決如下問題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(x-20162+x-20182=34,求(x-20172的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是在寫字臺上放置一本攤開的數學書和一個折疊式臺燈時的截面示意圖,已知攤開的數學書AB20cm,臺燈上半節(jié)DE40cm,下半節(jié)DC50cm.當臺燈燈泡E恰好在數學書AB的中點O的正上方時,臺燈上、下半節(jié)的夾角即∠EDC=120°,下半節(jié)DC與寫字臺FG的夾角即∠DCG=75°,求BC的長.(書的厚度和臺燈底座的寬度、高度都忽略不計,F、A、O、B、C、G在同一條直線上.參考數據:sin75°≈0.97,cos75°≈0.26,≈1.41,結果精確到0.1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數式表示線段CF的長;

(2)如果把CAE的周長記作CCAEBAF的周長記作CBAF,設=y,求y關于x的函數關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,公交車行駛在筆直的公路上,這條路上有A,B,C,D四個站點,每相鄰兩站之間的距離為5千米,從A站開往D站的車稱為上行車,從D站開往A站的車稱為下行車,第一班上行車、下行車分別從A站、D站同時發(fā)車,相向而行,且以后上行車、下行車每隔10分鐘分別在A,D站同時發(fā)一班車,乘客只能到站點上、下車(上、下車的時間忽略不計),上行車、下行車的速度均為30千米/小時.

(1)問第一班上行車到B站、第一班下行車到C站分別用時多少?

(2)若第一班上行車行駛時間為t小時,第一班上行車與第一班下行車之間的距離為s千米,求st的函數關系式;

(3)一乘客前往A站辦事,他在B,C兩站間的P處(不含B,C站),剛好遇到上行車,BP=x千米,此時,接到通知,必須在35分鐘內趕到,他可選擇走到B站或走到C站乘下行車前往A站.若乘客的步行速度是5千米/小時,求x滿足的條件.

查看答案和解析>>

同步練習冊答案