在平面直角坐標系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)的解析式及B點坐標;
(2)若將拋物線以為對稱軸向右翻折后,得到一個新的二次函數(shù),已知二次函數(shù)與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側作正方形PDEF(當P點運動時,點D.點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖像上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.
(1),B(3,0);(2)①;②或或或2.
【解析】
試題分析:(1)利用二次函數(shù)的圖象經(jīng)過原點及點A(1,2),分別代入求出a,c的值即可;
(2)①過A點作AH⊥x軸于H點,根據(jù)DP∥AH,得出△OPD∽△OHA,進而求出OP的長;
②分別利用當點F、點N重合時,當點F、點Q重合時,當點P、點N重合時,當點P、點Q重合時,求出t的值即可.
試題解析:(1)∵二次函數(shù)的圖象經(jīng)過原點及點A(1,2),∴將(0,0),代入得出:c=0,將(1,2)代入得出:a+3=2,解得:,故二次函數(shù)解析式為:,∵圖象與x軸相交于另一點B,∴,解得:x=0或3,則B(3,0);
(2)①由已知可得C(6,0),如圖:過A點作AH⊥x軸于H點,∵DP∥AH,∴△OPD∽△OHA,∴,即,∴PD=2a,∵正方形PDEF,∴E(3a,2a),∵E(3a,2a)在二次函數(shù)y1=﹣x2+3x的圖象上,∴a=;即OP=;
②如圖1:
當點F、點N重合時,有OF+CN=6,∵直線AO過點(1,2),故直線解析式為:y=2x,當OP=t,則AP=2t,∵直線AC過點(1,2),(6,0),代入y=ax+b,,,解得:,故直線AC的解析式為:,∵當OP=t,QC=2t,∴QO=6﹣2t,∴GQ=,即NQ=,∴OP+PN+NQ+QC=6,則有,解得:;
如圖2:
當點F、點Q重合時,有OF+CQ=6,則有,解得:;
如圖3:
當點P、點N重合時,有OP+CN=6,則有,解得:;
如圖4:
當點P、點Q重合時,有OP+CQ=6,則有,解得:.故此刻t的值為:,,,.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com