【題目】如圖,在△ABC中,BC=10,BC邊上的高為3.將點(diǎn)A繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D.沿BC翻折得到點(diǎn)F,從而得到一個(gè)凸五邊形BFCDE,求五邊形BFCDE的面積.
【答案】80
【解析】
將點(diǎn)C繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)G,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)H,連接EG、DH、GH,則△EBG≌△ABC≌△HDC,四邊形BCHG是正方形,六邊形BCDHGE是中心對(duì)稱圖形,根據(jù)軸對(duì)稱和中心對(duì)稱的性質(zhì)得出S△BEG=S△CDH=S△ABC,S四邊形BCDE=S六邊形BCDHGE,然后由S五邊形BFCDE=S四邊形BCDE+S△BFC即可求得.
將點(diǎn)C繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)G,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)H,連接EG、DH、GH,則△EBG≌△ABC≌△HDC,四邊形BCHG是正方形,六邊形BCDHGE是中心對(duì)稱圖形,
∴四邊形BCDE≌四邊形HGED,
∵S△BEG=S△CDH=S△ABC=×10×3=15=S△BFC,S正方形BCHG=10×10=100,
∴S六邊形BCDHGE=S△BEG+S△CDH+S正方形BCHG=2×15+100=130,
∴S四邊形BCDE=S六邊形BCDHGE=65,
∴S五邊形BFCDE=S四邊形BCDE+S△BFC=65+15=80,
故答案為:80.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD的對(duì)角線交于點(diǎn)O,已知△OBC的周長為59厘米,且AD的長是28厘米,兩對(duì)角線的差為14厘米,那么較長的一條對(duì)角線長是______厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小方格都是邊長為1個(gè)單位的小正方形,A、B、C三點(diǎn)都是格點(diǎn)(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)),其中A(1,8),B(3,8),C(4,7).
(1)若D(2,3),請(qǐng)?jiān)诰W(wǎng)格圖中畫一個(gè)格點(diǎn)△DEF,使△DEF ∽△ABC,且相似比為2∶1;
(2)求∠D的正弦值;
(3)若△ABC外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線y=與x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO上.將△CBO沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.
(1)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo):
(2)求AC的長;
(3)點(diǎn)P為平面內(nèi)一動(dòng)點(diǎn),且滿足以A、B、C、P為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接回答:
①符合要求的P點(diǎn)有幾個(gè)?
②寫出一個(gè)符合要求的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;并寫出點(diǎn)A2、B2、C2坐標(biāo);
(3)請(qǐng)畫出△ABC繞O逆時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點(diǎn)A3、B3、C3坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A'恰好落在BC的垂直平分線上時(shí),折痕EF的長為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點(diǎn)A,B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com