【題目】如圖,AB∥ED,CD=BF,若要說明△ABC ≌△EDF,則不能補(bǔ)充的條件是( 。
A.AC=EFB.AB=EDC.∠A=∠ED.AC∥EF
【答案】A
【解析】
根據(jù)平行線的性質(zhì)得出∠B=∠D,再求出BC=DF,根據(jù)全等三角形的判定定理逐個(gè)判斷即可.
解:∵AB∥DE,
∴∠B=∠D,
∵BF=DC,
∴BC=DF,
在△ABC和△DEF中, ,不能證得△ABC≌△DEF,故A選項(xiàng)正確;
在△ABC和△DEF中,,能證得△ABC≌△DEF(SAS),故B選項(xiàng)錯(cuò)誤;
在△ABC和△DEF中,,能證得△ABC≌△DEF(AAS),故C選項(xiàng)錯(cuò)誤;
∵AC∥EF,∴∠ACB=∠EFD,在△ABC和△DEF中,,能證得△ABC≌△DEF(ASA),故C選項(xiàng)錯(cuò)誤;
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種方法證明“四邊形的外角和等于360°”.
如圖,∠DAE、∠ABF、∠BCG、∠CDH是四邊形ABCD的四個(gè)外角.
求證:∠DAE+∠ABF+∠BCG+∠CDH=360°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A,D,B在同一直線上,則AB兩點(diǎn)的距離是( )
A.200米
B.200 米
C.220 米
D.100( )米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步了解七年級800名學(xué)生的身體素質(zhì)情況,體育老師抽取七年級男女各25位學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖.如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 |
|
第4組 | 140≤x<160 | 16 |
第5組 | 160≤x<180 | 6 |
請結(jié)合圖表完成下列問題:
(1)表中的,跳繩次數(shù)低于140次的有人,則
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若七年級學(xué)生一分鐘跳繩次數(shù)(x)達(dá)標(biāo)要求是:x≥120.請估算七年級學(xué)生達(dá)標(biāo)人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB//CD,P是兩條直線之間一點(diǎn),且AP⊥PC于P.
(1) 如圖1,求證:∠BAP+∠DCP=90°;
(2)如圖2,CQ平分∠PCG,AH平分∠BAP,直線AH、CQ交于Q,求∠AQC的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n為常數(shù),且mn≠0,n>0)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點(diǎn)A(0,0),B( ,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1 , 第2個(gè)△B1A2B2 , 第3個(gè)△B2A3B3 , …,則第n個(gè)等邊三角形的邊長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過點(diǎn)( ,8),直線y=﹣x+b經(jīng)過該反比例函數(shù)圖象上的點(diǎn)Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達(dá)式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)圖象的另一個(gè)交點(diǎn)為P,連接0P、OQ,求△OPQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com