【題目】如圖,在中,邊上的一點,連接,邊上的中點,過點的平行線交的延長線于點,且,連接.

1)求證:;

2)如果,試判斷四邊形的形狀,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)證明見解析

【解析】

1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFC=DCE,∠FAE=CDE,然后利用“角角邊”證明△AEF和△DEC全等后即可解答;

2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=ACAD是中線,利用等腰三角形三線合一定理,可證ADBC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

1)∵ , FAE=CDE,

又∵邊上的中點,∴.

.

又∵.

.

2)四邊形是矩形.

,.

∴四邊形是平行四邊形.

又∵,.

,即.

為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里裝有3個標(biāo)有數(shù)字1,2,4的小球,它們除數(shù)字不同外形狀大小完全相同.小昆從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,然后放回布袋攪勻,再從布袋中隨機(jī)取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標(biāo)(xy);

1)用列表或畫樹狀圖的方法(只選其中一種),表示出點M所有可能的坐標(biāo);

2)求點Mx,y)在函數(shù)y的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,F是半圓弧AB的中點,E是弧BF上一點,直線AE與過點B的切線相交于點C,連接EF

1)若EFAB,求∠ACB的度數(shù);

2)若⊙O的半徑為3,BC2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,,過第四象限內(nèi)一動點軸的垂線,垂足為,且,點、分別在線段軸上運動,則的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,ABCD,B=90°,AB=1,CD=2,BC=3,PBC邊上一動點,PABPCD是相似三角形,BP的長為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應(yīng)點A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=y=kx2-k(k≠0)在同一直角坐標(biāo)系中的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點E,BED的角平分線EFDC交于點F,若AB=9DF=2FC,則BC=____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形EFGH的四個頂點分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則)的值為_____.

查看答案和解析>>

同步練習(xí)冊答案