(2006•咸寧)如圖,△ABC中,∠ACB=90°,AC=BC,CO為中線.現(xiàn)將一直角三角板的直角頂點(diǎn)放在點(diǎn)O上并繞點(diǎn)O旋轉(zhuǎn),若三角板的兩直角邊分別交AC,CB的延長(zhǎng)線于點(diǎn)G,H.
(1)試寫出圖中除AC=BC,OA=OB=OC外其他所有相等的線段;
(2)請(qǐng)任選一組你寫出的相等線段給予證明.
我選擇證明______=______.
【答案】分析:(1)根據(jù)旋轉(zhuǎn)的意義,可判定CG=BH,AG=CH,OG=OH;
(2)根據(jù)等腰直角三角形的性質(zhì)和旋轉(zhuǎn)的意義,可證∠COG=∠BOH,∠GCO=∠OBH;
CD=BD,所以△GCO≌△HBO,即證CG=BH.
解答:解:(1)CG=BH,AG=CH,OG=OH.(3分)(每寫對(duì)一組給1分)

(2)∵∠ACB=90°,AC=BC,AO=BO,
∴CO=OB,CO⊥AB,∠ABC=45°.(4分)
∵∠COG+∠GOB=90°,∠BOH+∠GOB=90°,
∴∠COG=∠BOH.(5分)
又∵∠ABC=∠OCB=45°,
∴∠OBH=180°-45°=135°,∠GCO=90°+45°=135°,
∴∠GCO=∠OBH.(6分)
(利用等角的補(bǔ)角相等證∠GCO=∠OBH比照給分)
∴△GCO≌△HBO,(7分)
∴CG=BH.(8分)
證其他兩組線段相等比照給分.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•咸寧)如圖①,在△ABC中,AB=AC,O為AB的中點(diǎn).以O(shè)為圓心,OB為半徑的圓交BC于點(diǎn)D,過D作DE⊥AC,垂足為E,我們可以證得DE是⊙O的切線.
(1)若點(diǎn)O沿AB向點(diǎn)B移動(dòng),以O(shè)為圓心,OB為半徑的圓仍交BC于點(diǎn)D,DE⊥AC,垂足為E,AB=AC不變(如圖②),那么DE與⊙O有什么位置關(guān)系,請(qǐng)寫出你的結(jié)論并證明;
(2)在(1)的條件下,若⊙O與AC相切于點(diǎn)F,交AB于點(diǎn)G(如圖③).已知⊙O的半徑長(zhǎng)為3,CE=1,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•咸寧)如圖,△ABC中,∠ACB=90°,AC=BC,CO為中線.現(xiàn)將一直角三角板的直角頂點(diǎn)放在點(diǎn)O上并繞點(diǎn)O旋轉(zhuǎn),若三角板的兩直角邊分別交AC,CB的延長(zhǎng)線于點(diǎn)G,H.
(1)試寫出圖中除AC=BC,OA=OB=OC外其他所有相等的線段;
(2)請(qǐng)任選一組你寫出的相等線段給予證明.
我選擇證明______=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•咸寧)如圖,直線AB∥CD,直接EF交AB于G,交CD于F,直線EH交AB于H.若∠1=45°,∠2=60°,則∠E的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•咸寧)如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(diǎn)(即小正方形的頂點(diǎn)),要使△DEF與△ABC相似,則點(diǎn)F應(yīng)是G,H,M,N四點(diǎn)中的( )

A.H或N
B.G或H
C.M或N
D.G或M

查看答案和解析>>

同步練習(xí)冊(cè)答案