【題目】 請將下列證明過程補充完整:

已知:∠1=E,∠B=D求證:ABCD

證明:∵ 1=E 已知

D+2=180°

B=D 已知

B+ 2= 180° ( )

ABCD

【答案】∵∠1=∠E(已知),

ADBE(內(nèi)錯角相等,兩直線平行),

∴∠D+∠2180°(兩直線平行,同旁內(nèi)角互補);

∵∠B=∠D(已知),

∴∠B+∠2180°(等量代換)

ABCD(同旁內(nèi)角互補,兩直線平行)

【解析】

根據(jù)∠1=∠E可判定ADBE,可得∠D和∠2為同旁內(nèi)角互補;結(jié)合∠B=∠D,可推得∠2和∠B也互補,從而判定AB平行于CD

證明:∵∠1=∠E(已知),

ADBE(內(nèi)錯角相等,兩直線平行),

∴∠D+∠2180°(兩直線平行,同旁內(nèi)角互補);

∵∠B=∠D(已知),

∴∠B+∠2180°,

ABCD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程 有兩個不相等的實數(shù)根,
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。

(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關(guān)系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點DBC上,ABACBD,ADDC,將ACD沿AD折疊至AEDAEBC于點F

1)求∠C的度數(shù);

2)求證:BFCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,ABAC,過點BBDAB,過點CCDBC,兩線相交于點D,AF平分∠BACBC于點E,交BD于點F

1)若∠BAC68°,求∠DBC;

2)求證:點FBD中點;

3)若ACBD,且CD3,求四邊形ABDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個正方形分割成11個大小不同的正方形,記圖中最大正方形的周長是,最小正方形的周長是,則_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y(tǒng)=a(x﹣4)2+h,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣ 時,①求h的值;
②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A、B表示的點分別為-63

1)若數(shù)軸上有一點P,它到A和點B的距離相等,則點P對應(yīng)的數(shù)字是________(直接寫出答案)

2)在上問的情況下,動點Q從點P出發(fā),以3個單位長度/秒的速度在數(shù)軸上向左移動,是否存在某一個時刻,Q點與B點的距離等于 Q點與A點的距離的2倍?若存在,求出點Q運動的時間,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案