【題目】 請將下列證明過程補充完整:
已知:∠1=∠E,∠B=∠D.求證:AB∥CD
證明:∵ ∠1=∠E( 已知 )
∴ ∥ ( )
∴ ∠D+∠2=180° ( )
∵ ∠B=∠D( 已知 )
∴ ∠B+ ∠2= 180° ( )
∴ AB∥CD ( )
【答案】∵∠1=∠E(已知),
∴AD∥BE(內(nèi)錯角相等,兩直線平行),
∴∠D+∠2=180°(兩直線平行,同旁內(nèi)角互補);
∵∠B=∠D(已知),
∴∠B+∠2=180°(等量代換)
∴AB∥CD(同旁內(nèi)角互補,兩直線平行)
【解析】
根據(jù)∠1=∠E可判定AD∥BE,可得∠D和∠2為同旁內(nèi)角互補;結(jié)合∠B=∠D,可推得∠2和∠B也互補,從而判定AB平行于CD.
證明:∵∠1=∠E(已知),
∴AD∥BE(內(nèi)錯角相等,兩直線平行),
∴∠D+∠2=180°(兩直線平行,同旁內(nèi)角互補);
∵∠B=∠D(已知),
∴∠B+∠2=180°,
∴AB∥CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程 有兩個不相等的實數(shù)根,
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD= 120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關(guān)系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在BC上,AB=AC=BD,AD=DC,將△ACD沿AD折疊至△AED,AE交BC于點F.
(1)求∠C的度數(shù);
(2)求證:BF=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,過點B作BD⊥AB,過點C作CD⊥BC,兩線相交于點D,AF平分∠BAC交BC于點E,交BD于點F.
(1)若∠BAC=68°,求∠DBC;
(2)求證:點F為BD中點;
(3)若AC=BD,且CD=3,求四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y(tǒng)=a(x﹣4)2+h,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣ 時,①求h的值;
②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上點A、B表示的點分別為-6和3
(1)若數(shù)軸上有一點P,它到A和點B的距離相等,則點P對應(yīng)的數(shù)字是________(直接寫出答案)
(2)在上問的情況下,動點Q從點P出發(fā),以3個單位長度/秒的速度在數(shù)軸上向左移動,是否存在某一個時刻,Q點與B點的距離等于 Q點與A點的距離的2倍?若存在,求出點Q運動的時間,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com