【題目】1是用鋼絲制作的一個幾何探究工具,其中△ABC內(nèi)接于⊙G,AB是⊙G的直徑,AB=6,AC=2.現(xiàn)將制作的幾何探究工具放在平面直角坐標系中(如圖2),然后點A在射線OX上由點O開始向右滑動,點B在射線OY上也隨之向點O滑動(如圖3),當點B滑動至與點O重合時運動結束. 在整個運動過程中,點C運動的路程是( 。

A. 4 B. 6 C. 4﹣2 D. 10﹣4

【答案】D

【解析】

由于在運動過程中,原點始終在上,則弧的長保持不變,弧所對應的圓周角保持不變,等于,故點在與軸夾角為的射線上運動,頂點的運動軌跡2應是一條線段,且點移動到圖中位置最遠,然后又慢慢移動到結束,點經(jīng)過的路程應是線段 .

如圖3,連接,

是直角,中點,

半徑,

原點始終在上,

,

連接,則,

,

在與軸夾角為的射線上運動,

如圖4,

如圖5,,

總路徑為:,

故選.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+5xp20

1)求證:無論p取何值,方程總有兩個不相等的實數(shù)根;

2)設方程的兩個實數(shù)根為x1、x2,當x1+x2x1x2時,求p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( 。┢椒矫祝

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,弦ABCD相交于點E,,點D上,連接CO,并延長CO交線段AB于點F,連接OA、OB,且OAtanOBA

1)求證:∠OBA=∠OCD;

2)當AOF是直角三角形時,求EF的長;

3)是否存在點F,使得SCEF4SBOF,若存在,請求EF的長,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC10m.拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內(nèi)的條件下活動,其可以活動的區(qū)域面積為Sm2).①如圖1,若BC4m,則S m2.②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變則在BC的變化過程中,當S取得最小值時,邊BC的長為 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學生對這些欄目的喜愛情況,某學校組織學生會成員隨機抽取了部分學生進行調(diào)查,被調(diào)查的學生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息解答下列問題:

(1)在這項調(diào)查中,共調(diào)查了多少名學生?

(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);

(3)若選擇“E”的學生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學生中隨機選出兩名學生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:(1)(x3290;(2x22x2x+1;(3)(x+1)(x1)+2x+3)=8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2-2ax+ca≠0)與y軸交于點C0,4),與x軸交于點A、B,點A的坐標為(4,0.

1)求該拋物線的解析式;

2)點Q是線段AB上的動點,過點QQE∥AC,交BC于點E,連接CQ,當△CQE的面積為3時,求點Q的坐標;

3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(20.問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB20米,BC40米,求AD的長.(1.732,1.414,結果精確到0.01)

查看答案和解析>>

同步練習冊答案