如圖,菱形ABCD中,AB=10,BG⊥AD于G,BG=8,點E在AB上,AE=4,過點E作EF∥AD,交CD于F,點P從點A出發(fā)以1個單位/s的速度沿著線段AB向終點B運動,同時點Q從點E出發(fā)也以1個單位/s的速度沿著線段EF向終點F運動,設運動時間為t(s)。
(1)填空:當t=5時,PQ=____;
(2)當BQ平分∠ABC時,直線PQ將菱形的周長分成兩部分,求這兩部分的比;
(3)以P為圓心,PQ長為半徑的⊙P是否能與直線AD相切?如果能,求此時t的值;如果不能,說明理由。

解:(1);
(2)連結BD,則BD與EF的交點即點Q,求出EQ=6,t=6,BP=4,
設PQ交CD于點M,則MD=,MC=,
因此菱形的周長被分為,所以這兩部分的比為7:8;
(3)⊙P能與直線AD相切。
過P作PH⊥AD于H,Q作QN⊥AB于N,
則PH=QN=,NE=,
PN=,PQ2=,
由題意可得方程,
解得:t=10。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F(xiàn)分別是CB,CD上的點,且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點E,F(xiàn)分別為BC和CD的中點,求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD中,∠A=60°,AB=2,動點P從點B出發(fā),以每秒1個單位長度的速度沿B→C→D向終點D運動.同時動點Q從點A出發(fā),以相同的速度沿A→D→B向終點B運動,運動的時間為x秒,當點P到達點D時,點P、Q同時停止運動,設△APQ的面積為y,則反映y與x的函數(shù)關系的圖象是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點,P是對角線AC上的一個動點,若AB長為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:菱形ABCD中,E是AB的中點,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數(shù);
(2)對角線BD的長;
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長.
(2)求菱形的面積.

查看答案和解析>>

同步練習冊答案